Skip to main content
Heart logoLink to Heart
. 1999 Aug;82(2):163–169. doi: 10.1136/hrt.82.2.163

Imaging of adenosine bolus transit following intravenous administration: insights into antiarrhythmic efficacy

G Ng 1, W Martin 1, A Rankin 1
PMCID: PMC1729130  PMID: 10409529

Abstract

OBJECTIVE—To study the effects of the site of intravenous injection of adenosine and to assess the site of action of adenosine in the heart by correlating cardiac effects with bolus transit.
METHODS—Ten patients undergoing routine technetium (Tc-99m) gated blood pool ventriculography consented to the coadministration of intravenous adenosine. The dose of adenosine required to produce heart block during sinus rhythm was determined following antecubital vein administration. This dose (6-18 mg) was mixed with Tc-99m and given first into the same antecubital vein (proximal injection) and then repeated into a hand vein (distal injection). The ECG was recorded and the transit of the bolus was imaged using a gamma camera.
RESULTS—Heart block occurred in all 10 patients (second degree in seven, first degree in three) at (mean (SEM)) 17.5 (1.0) seconds after the proximal injection of adenosine. Distal injection produced heart block in six patients (second degree in two, first degree in four) at 21.9 (4.4) seconds (p < 0.01). In eight of 10 patients the electrophysiological effects were less with distal injection. The onset of heart block was close to the time of peak bolus Tc-99m activity in the left ventricle. Peak bolus activity was delayed (by about three seconds) and the duration of bolus activity in the left ventricle was increased with distal injection compared with proximal injection, at 17.2 (4.2) v 9.2 (3.1) seconds, p < 0.01.
CONCLUSIONS—The lesser electrophysiological effects of adenosine following distal intravenous injections were associated with delay in transit time and dispersion of the bolus. The correlation of adenosine induced heart block with bolus activity in the left heart indicated dependence on coronary arterial delivery of adenosine to the atrioventricular node.


Keywords: adenosine; antiarrhythmics; nuclear medicine; imaging

Full Text

The Full Text of this article is available as a PDF (126.8 KB).

Figure 1  .

Figure 1  

Activity of adenosine/technetium-99m bolus imaged during transit from (A) left upper arm and shoulder through (B) right ventricle, (C) pulmonary artery and lungs to (D) left ventricle and aorta. The totalised image from frames captured during the transit is shown in (E) and the four regions of interest—left upper arm, left shoulder, right ventricle, and left ventricle—are shown (F).

Figure 2  .

Figure 2  

Activity-time curves at the four regions of interest following (A) the proximal injection and (B) the distal injection.

Figure 3  .

Figure 3  

ECG responses produced by the proximal and distal injections of adenosine.

Figure 4  .

Figure 4  

ECG recordings following (A) proximal injection of adenosine, showing second degree AV block, and (B) distal injection of adenosine in the same patient, which did not produce AV block. Adenosine was given 16 seconds before beginning these recordings. Marker deflections on the tracings correspond to the patient's reporting of systemic symptoms. (Surface ECG leads II and aVF, 25 mm/s.)

Figure 5  .

Figure 5  

Time to peak bolus activity (mean and standard error bars) at each of the four regions of interest for patients who had AV block with (A) the proximal injection, n = 10, and (B) the distal injection, n = 6. The mean time of AV block following each injection is indicated by the thick horizontal lines and standard errors are shown as the thin lines.

Figure 6  .

Figure 6  

Time to peak bolus activity (mean and standard error bars) at each of the four regions of interest for patients who had sinus slowing with (A) the proximal injection, n = 6, and (B) the distal injection, n = 5. The mean time of sinus slowing following each injection is indicated by the thick horizontal lines and standard errors are shown as the thin lines.

Figure 7  .

Figure 7  

Correlation between the duration of AV block produced by adenosine injection (proximal) and the duration of bolus activity in (A) the right ventricle and (B) the left ventricle.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belardinelli L., Giles W. R., West A. Ionic mechanisms of adenosine actions in pacemaker cells from rabbit heart. J Physiol. 1988 Nov;405:615–633. doi: 10.1113/jphysiol.1988.sp017352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clemo H. F., Belardinelli L. Effect of adenosine on atrioventricular conduction. I: Site and characterization of adenosine action in the guinea pig atrioventricular node. Circ Res. 1986 Oct;59(4):427–436. doi: 10.1161/01.res.59.4.427. [DOI] [PubMed] [Google Scholar]
  3. Cohen T. J., Tucker K. J., Abbott J. A., Botvinick E. H., Foster E., Schiller N. B., O'Connell J. W., Scheinman M. M. Usefulness of adenosine in augmenting ventricular preexcitation for noninvasive localization of accessory pathways. Am J Cardiol. 1992 May 1;69(14):1178–1185. doi: 10.1016/0002-9149(92)90932-o. [DOI] [PubMed] [Google Scholar]
  4. DiMarco J. P., Miles W., Akhtar M., Milstein S., Sharma A. D., Platia E., McGovern B., Scheinman M. M., Govier W. C. Adenosine for paroxysmal supraventricular tachycardia: dose ranging and comparison with verapamil. Assessment in placebo-controlled, multicenter trials. The Adenosine for PSVT Study Group. Ann Intern Med. 1990 Jul 15;113(2):104–110. doi: 10.7326/0003-4819-113-2-104. [DOI] [PubMed] [Google Scholar]
  5. DiMarco J. P., Sellers T. D., Berne R. M., West G. A., Belardinelli L. Adenosine: electrophysiologic effects and therapeutic use for terminating paroxysmal supraventricular tachycardia. Circulation. 1983 Dec;68(6):1254–1263. doi: 10.1161/01.cir.68.6.1254. [DOI] [PubMed] [Google Scholar]
  6. Favale S., Di Biase M., Rizzo U., Belardinelli L., Rizzon P. Effect of adenosine and adenosine-5'-triphosphate on atrioventricular conduction in patients. J Am Coll Cardiol. 1985 May;5(5):1212–1219. doi: 10.1016/s0735-1097(85)80027-9. [DOI] [PubMed] [Google Scholar]
  7. Garratt C. J., Antoniou A., Griffith M. J., Ward D. E., Camm A. J. Use of intravenous adenosine in sinus rhythm as a diagnostic test for latent preexcitation. Am J Cardiol. 1990 Apr 1;65(13):868–873. doi: 10.1016/0002-9149(90)91428-9. [DOI] [PubMed] [Google Scholar]
  8. Keim S., Curtis A. B., Belardinelli L., Epstein M. L., Staples E. D., Lerman B. B. Adenosine-induced atrioventricular block: a rapid and reliable method to assess surgical and radiofrequency catheter ablation of accessory atrioventricular pathways. J Am Coll Cardiol. 1992 Apr;19(5):1005–1012. doi: 10.1016/0735-1097(92)90285-u. [DOI] [PubMed] [Google Scholar]
  9. Lai W. T., Lee C. S., Wu J. C., Sheu S. H., Wu S. N. Effects of verapamil, propranolol, and procainamide on adenosine-induced negative dromotropism in human beings. Am Heart J. 1996 Oct;132(4):768–775. doi: 10.1016/s0002-8703(96)90309-9. [DOI] [PubMed] [Google Scholar]
  10. Lai W. T., Lee C. S., Wu S. N. Rate-dependent properties of adenosine-induced negative dromotropism in humans. Circulation. 1994 Oct;90(4):1832–1839. doi: 10.1161/01.cir.90.4.1832. [DOI] [PubMed] [Google Scholar]
  11. Lauer M. R., Young C., Liem L. B., Sung R. J. Efficacy of adenosine in terminating catecholamine-dependent supraventricular tachycardia. Am J Cardiol. 1994 Jan 1;73(1):38–42. doi: 10.1016/0002-9149(94)90724-2. [DOI] [PubMed] [Google Scholar]
  12. Martynyuk A. E., Kane K. A., Cobbe S. M., Rankin A. C. Adenosine increases potassium conductance in isolated rabbit atrioventricular nodal myocytes. Cardiovasc Res. 1995 Nov;30(5):668–675. [PubMed] [Google Scholar]
  13. McIntosh-Yellin N. L., Drew B. J., Scheinman M. M. Safety and efficacy of central intravenous bolus administration of adenosine for termination of supraventricular tachycardia. J Am Coll Cardiol. 1993 Sep;22(3):741–745. doi: 10.1016/0735-1097(93)90185-4. [DOI] [PubMed] [Google Scholar]
  14. Mubagwa K., Mullane K., Flameng W. Role of adenosine in the heart and circulation. Cardiovasc Res. 1996 Nov;32(5):797–813. [PubMed] [Google Scholar]
  15. Möser G. H., Schrader J., Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol. 1989 Apr;256(4 Pt 1):C799–C806. doi: 10.1152/ajpcell.1989.256.4.C799. [DOI] [PubMed] [Google Scholar]
  16. Rankin A. C., Brooks R., Ruskin J. N., McGovern B. A. Adenosine and the treatment of supraventricular tachycardia. Am J Med. 1992 Jun;92(6):655–664. doi: 10.1016/0002-9343(92)90784-9. [DOI] [PubMed] [Google Scholar]
  17. Rankin A. C., Oldroyd K. G., Chong E., Rae A. P., Cobbe S. M. Value and limitations of adenosine in the diagnosis and treatment of narrow and broad complex tachycardias. Br Heart J. 1989 Sep;62(3):195–203. doi: 10.1136/hrt.62.3.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Walker K. W., Silka M. J., Haupt D., Kron J., McAnulty J. H., Halperin B. D. Use of adenosine to identify patients at risk for recurrence of accessory pathway conduction after initially successful radiofrequency catheter ablation. Pacing Clin Electrophysiol. 1995 Mar;18(3 Pt 1):441–446. doi: 10.1111/j.1540-8159.1995.tb02543.x. [DOI] [PubMed] [Google Scholar]
  19. Wang D., Shryock J. C., Belardinelli L. Cellular basis for the negative dromotropic effect of adenosine on rabbit single atrioventricular nodal cells. Circ Res. 1996 Apr;78(4):697–706. doi: 10.1161/01.res.78.4.697. [DOI] [PubMed] [Google Scholar]
  20. Yeung-Lai-Wah J. A., Alison J. F., Lonergan L., Mohama R., Leather R., Kerr C. R. High success rate of atrioventricular node ablation with radiofrequency energy. J Am Coll Cardiol. 1991 Dec;18(7):1753–1758. doi: 10.1016/0735-1097(91)90516-c. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES