Abstract
OBJECTIVES—To determine the efficacy of coronary angioplasty as the sole method of revascularisation in patients with coronary artery disease and chronically dysfunctional but viable myocardium (hibernating myocardium), and to assess the effect of restenosis on functional outcome. DESIGN AND PATIENTS—24 consecutive patients with hibernating myocardium were studied. Positron emission tomography was used to assess myocardial viability, blood flow, and flow reserve. One patient refused angioplasty, one had bypass surgery, and one died while waiting for an elective procedure. The procedure failed in three patients. The remaining 18 patients had repeat echocardiography, 15 had repeat coronary angiography, and nine had repeat assessments of blood flow and flow reserve at mean (SD) 17 (2) weeks after angioplasty. In three patients restenosis was documented. RESULTS—The wall motion score index in the revascularised territories improved from 1.71 (0.37) to 1.34 (0.47) (p = 0.008). Thirty of 51 dysfunctional segments improved in territories without restenosis compared with three of 14 in restenosed territories (p = 0.001). Hibernating and normal segments had comparable flows (0.82 (0.26) v 0.89 (0.24) ml/min/g; NS) while flow reserve was lower in hibernating segments (1.55 (0.68) v 2.07 (1.08); p = 0.03). In segments without restenosis flow reserve improved from 2.03 (1.25) to 2.33 (1.4) (p = 0.03). Sensitivity, specificity, and positive and negative predictive accuracy of the viability study were 97%, 77%, 82%, and 96%, respectively. After excluding patients with restenosis, specificity and positive predictive accuracy improved to 90% and 93%. CONCLUSIONS—Angioplasty improves function in hibernating myocardium, and restenosis prevents recovery; hibernating myocardium is characterised by an impairment of flow reserve; restenosis affects the diagnostic accuracy of viability studies. Keywords: coronary artery disease; percutaneous transluminal coronary angioplasty; myocardial hibernation; myocardial blood flow; positron emission tomography
Full Text
The Full Text of this article is available as a PDF (121.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Afridi I., Kleiman N. S., Raizner A. E., Zoghbi W. A. Dobutamine echocardiography in myocardial hibernation. Optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation. 1995 Feb 1;91(3):663–670. doi: 10.1161/01.cir.91.3.663. [DOI] [PubMed] [Google Scholar]
- Araujo L. I., Lammertsma A. A., Rhodes C. G., McFalls E. O., Iida H., Rechavia E., Galassi A., De Silva R., Jones T., Maseri A. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation. 1991 Mar;83(3):875–885. doi: 10.1161/01.cir.83.3.875. [DOI] [PubMed] [Google Scholar]
- Ausma J., Cleutjens J., Thoné F., Flameng W., Ramaekers F., Borgers M. Chronic hibernating myocardium: interstitial changes. Mol Cell Biochem. 1995 Jun 7;147(1-2):35–42. doi: 10.1007/BF00944781. [DOI] [PubMed] [Google Scholar]
- Ausma J., Fürst D., Thoné F., Shivalkar B., Flameng W., Weber K., Ramaekers F., Borgers M. Molecular changes of titin in left ventricular dysfunction as a result of chronic hibernation. J Mol Cell Cardiol. 1995 May;27(5):1203–1212. doi: 10.1016/0022-2828(95)90056-x. [DOI] [PubMed] [Google Scholar]
- Bergmann S. R., Herrero P., Markham J., Weinheimer C. J., Walsh M. N. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol. 1989 Sep;14(3):639–652. doi: 10.1016/0735-1097(89)90105-8. [DOI] [PubMed] [Google Scholar]
- Camici P. G., Wijns W., Borgers M., De Silva R., Ferrari R., Knuuti J., Lammertsma A. A., Liedtke A. J., Paternostro G., Vatner S. F. Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation. 1997 Nov 4;96(9):3205–3214. doi: 10.1161/01.cir.96.9.3205. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Tobin J. D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979 Sep;237(3):E214–E223. doi: 10.1152/ajpendo.1979.237.3.E214. [DOI] [PubMed] [Google Scholar]
- Detre K., Holubkov R., Kelsey S., Cowley M., Kent K., Williams D., Myler R., Faxon D., Holmes D., Jr, Bourassa M. Percutaneous transluminal coronary angioplasty in 1985-1986 and 1977-1981. The National Heart, Lung, and Blood Institute Registry. N Engl J Med. 1988 Feb 4;318(5):265–270. doi: 10.1056/NEJM198802043180501. [DOI] [PubMed] [Google Scholar]
- DiSciascio G., Cowley M. J., Vetrovec G. W., Kelly K. M., Lewis S. A. Triple vessel coronary angioplasty: acute outcome and long-term results. J Am Coll Cardiol. 1988 Jul;12(1):42–48. doi: 10.1016/0735-1097(88)90354-3. [DOI] [PubMed] [Google Scholar]
- Eitzman D., al-Aouar Z., Kanter H. L., vom Dahl J., Kirsh M., Deeb G. M., Schwaiger M. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol. 1992 Sep;20(3):559–565. doi: 10.1016/0735-1097(92)90008-b. [DOI] [PubMed] [Google Scholar]
- Fialkow P. J., Singer J. W., Adamson J. W., Berkow R. L., Friedman J. M., Jacobson R. J., Moohr J. W. Acute nonlymphocytic leukemia: expression in cells restricted to granulocytic and monocytic differentiation. N Engl J Med. 1979 Jul 5;301(1):1–5. doi: 10.1056/NEJM197907053010101. [DOI] [PubMed] [Google Scholar]
- Gerber B. L., Vanoverschelde J. L., Bol A., Michel C., Labar D., Wijns W., Melin J. A. Myocardial blood flow, glucose uptake, and recruitment of inotropic reserve in chronic left ventricular ischemic dysfunction. Implications for the pathophysiology of chronic myocardial hibernation. Circulation. 1996 Aug 15;94(4):651–659. doi: 10.1161/01.cir.94.4.651. [DOI] [PubMed] [Google Scholar]
- Gropler R. J., Geltman E. M., Sampathkumaran K., Pérez J. E., Schechtman K. B., Conversano A., Sobel B. E., Bergmann S. R., Siegel B. A. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol. 1993 Nov 15;22(6):1587–1597. doi: 10.1016/0735-1097(93)90582-l. [DOI] [PubMed] [Google Scholar]
- Knuuti M. J., Saraste M., Nuutila P., Härkönen R., Wegelius U., Haapanen A., Bergman J., Haaparanta M., Savunen T., Voipio-Pulkki L. M. Myocardial viability: fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. Am Heart J. 1994 Apr;127(4 Pt 1):785–796. doi: 10.1016/0002-8703(94)90545-2. [DOI] [PubMed] [Google Scholar]
- Lee K. S., Marwick T. H., Cook S. A., Go R. T., Fix J. S., James K. B., Sapp S. K., MacIntyre W. J., Thomas J. D. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation. 1994 Dec;90(6):2687–2694. doi: 10.1161/01.cir.90.6.2687. [DOI] [PubMed] [Google Scholar]
- Lucignani G., Paolini G., Landoni C., Zuccari M., Paganelli G., Galli L., Di Credico G., Vanoli G., Rossetti C., Mariani M. A. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med. 1992;19(10):874–881. doi: 10.1007/BF00168164. [DOI] [PubMed] [Google Scholar]
- Maddahi J., Schelbert H., Brunken R., Di Carli M. Role of thallium-201 and PET imaging in evaluation of myocardial viability and management of patients with coronary artery disease and left ventricular dysfunction. J Nucl Med. 1994 Apr;35(4):707–715. [PubMed] [Google Scholar]
- Marinho N. V., Keogh B. E., Costa D. C., Lammerstma A. A., Ell P. J., Camici P. G. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation. 1996 Feb 15;93(4):737–744. doi: 10.1161/01.cir.93.4.737. [DOI] [PubMed] [Google Scholar]
- Marwick T. H., MacIntyre W. J., Lafont A., Nemec J. J., Salcedo E. E. Metabolic responses of hibernating and infarcted myocardium to revascularization. A follow-up study of regional perfusion, function, and metabolism. Circulation. 1992 Apr;85(4):1347–1353. doi: 10.1161/01.cir.85.4.1347. [DOI] [PubMed] [Google Scholar]
- Melgares R., Prieto J. A., Azpitarte J. Significant coronary restenosis limits the recovery of regional left myocardial dysfunction achieved after successful coronary angioplasty. Eur Heart J. 1993 Jul;14(7):866–875. doi: 10.1093/eurheartj/14.7.866. [DOI] [PubMed] [Google Scholar]
- Miketić S., Carlsson J., Tebbe U. Improvement of global and regional left ventricular function by percutaneous transluminal coronary angioplasty after myocardial infarction. J Am Coll Cardiol. 1995 Mar 15;25(4):843–847. doi: 10.1016/0735-1097(94)00467-5. [DOI] [PubMed] [Google Scholar]
- Mäki M., Luotolahti M., Nuutila P., Iida H., Voipio-Pulkki L. M., Ruotsalainen U., Haaparanta M., Solin O., Hartiala J., Härkönen R. Glucose uptake in the chronically dysfunctional but viable myocardium. Circulation. 1996 May 1;93(9):1658–1666. doi: 10.1161/01.cir.93.9.1658. [DOI] [PubMed] [Google Scholar]
- Nienaber C. A., Brunken R. C., Sherman C. T., Yeatman L. A., Gambhir S. S., Krivokapich J., Demer L. L., Ratib O., Child J. S., Phelps M. E. Metabolic and functional recovery of ischemic human myocardium after coronary angioplasty. J Am Coll Cardiol. 1991 Oct;18(4):966–978. doi: 10.1016/0735-1097(91)90755-x. [DOI] [PubMed] [Google Scholar]
- Okada R. D., Murphy J. H., Boucher C. A., Pohost G. M., Strauss H. W., Johnson G., 3rd, Daggett W. M. Relationship between septal perfusion, viability, and motion before and after coronary artery bypass surgery. Am Heart J. 1992 Nov;124(5):1190–1195. doi: 10.1016/0002-8703(92)90399-g. [DOI] [PubMed] [Google Scholar]
- Paternostro G., Camici P. G., Lammerstma A. A., Marinho N., Baliga R. R., Kooner J. S., Radda G. K., Ferrannini E. Cardiac and skeletal muscle insulin resistance in patients with coronary heart disease. A study with positron emission tomography. J Clin Invest. 1996 Nov 1;98(9):2094–2099. doi: 10.1172/JCI119015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pocock S. J., Henderson R. A., Rickards A. F., Hampton J. R., King S. B., 3rd, Hamm C. W., Puel J., Hueb W., Goy J. J., Rodriguez A. Meta-analysis of randomised trials comparing coronary angioplasty with bypass surgery. Lancet. 1995 Nov 4;346(8984):1184–1189. doi: 10.1016/s0140-6736(95)92897-9. [DOI] [PubMed] [Google Scholar]
- Salerno D. M., Granrud G., Sharkey P., Asinger R., Hodges M. A controlled trial of propafenone for treatment of frequent and repetitive ventricular premature complexes. Am J Cardiol. 1984 Jan 1;53(1):77–83. doi: 10.1016/0002-9149(84)90687-8. [DOI] [PubMed] [Google Scholar]
- Schelbert H. R. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med. 1992 Jul;33(7):1263–1266. [PubMed] [Google Scholar]
- Schiller N. B., Shah P. M., Crawford M., DeMaria A., Devereux R., Feigenbaum H., Gutgesell H., Reichek N., Sahn D., Schnittger I. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989 Sep-Oct;2(5):358–367. doi: 10.1016/s0894-7317(89)80014-8. [DOI] [PubMed] [Google Scholar]
- Shen Y. T., Vatner S. F. Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs. Hibernation versus stunning? Circ Res. 1995 Mar;76(3):479–488. doi: 10.1161/01.res.76.3.479. [DOI] [PubMed] [Google Scholar]
- Shivalkar B., Maes A., Borgers M., Ausma J., Scheys I., Nuyts J., Mortelmans L., Flameng W. Only hibernating myocardium invariably shows early recovery after coronary revascularization. Circulation. 1996 Aug 1;94(3):308–315. doi: 10.1161/01.cir.94.3.308. [DOI] [PubMed] [Google Scholar]
- Tamaki N., Kawamoto M., Tadamura E., Magata Y., Yonekura Y., Nohara R., Sasayama S., Nishimura K., Ban T., Konishi J. Prediction of reversible ischemia after revascularization. Perfusion and metabolic studies with positron emission tomography. Circulation. 1995 Mar 15;91(6):1697–1705. doi: 10.1161/01.cir.91.6.1697. [DOI] [PubMed] [Google Scholar]
- Tamaki N., Kawamoto M., Takahashi N., Yonekura Y., Magata Y., Nohara R., Kambara H., Sasayama S., Hirata K., Ban T. Prognostic value of an increase in fluorine-18 deoxyglucose uptake in patients with myocardial infarction: comparison with stress thallium imaging. J Am Coll Cardiol. 1993 Nov 15;22(6):1621–1627. doi: 10.1016/0735-1097(93)90586-p. [DOI] [PubMed] [Google Scholar]
- Tamaki N., Yonekura Y., Konishi J. Myocardial FDG PET studies with the fasting, oral glucose-loading or insulin clamp methods. J Nucl Med. 1992 Jul;33(7):1263, 1266-8. [PubMed] [Google Scholar]
- Tamaki N., Yonekura Y., Yamashita K., Saji H., Magata Y., Senda M., Konishi Y., Hirata K., Ban T., Konishi J. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol. 1989 Oct 15;64(14):860–865. doi: 10.1016/0002-9149(89)90832-1. [DOI] [PubMed] [Google Scholar]
- Tillisch J., Brunken R., Marshall R., Schwaiger M., Mandelkern M., Phelps M., Schelbert H. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986 Apr 3;314(14):884–888. doi: 10.1056/NEJM198604033141405. [DOI] [PubMed] [Google Scholar]
- Uren N. G., Melin J. A., De Bruyne B., Wijns W., Baudhuin T., Camici P. G. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994 Jun 23;330(25):1782–1788. doi: 10.1056/NEJM199406233302503. [DOI] [PubMed] [Google Scholar]
- Vanoverschelde J. L., Wijns W., Depré C., Essamri B., Heyndrickx G. R., Borgers M., Bol A., Melin J. A. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation. 1993 May;87(5):1513–1523. doi: 10.1161/01.cir.87.5.1513. [DOI] [PubMed] [Google Scholar]
- Vignola P. A., Boucher C. A., Curfman G. D., Walker H. J., Shea W. H., Dinsmore R. E., Pohost G. M. Abnormal interventricular septal motion following cardiac surgery: clinical, surgical, echocardiographic and radionuclide correlates. Am Heart J. 1979 Jan;97(1):27–34. doi: 10.1016/0002-8703(79)90110-8. [DOI] [PubMed] [Google Scholar]
- Wijns W., Vatner S. F., Camici P. G. Hibernating myocardium. N Engl J Med. 1998 Jul 16;339(3):173–181. doi: 10.1056/NEJM199807163390307. [DOI] [PubMed] [Google Scholar]
- vom Dahl J., Altehoefer C., Sheehan F. H., Buechin P., Uebis R., Messmer B. J., Buell U., Hanrath P. Recovery of regional left ventricular dysfunction after coronary revascularization. Impact of myocardial viability assessed by nuclear imaging and vessel patency at follow-up angiography. J Am Coll Cardiol. 1996 Oct;28(4):948–958. doi: 10.1016/s0735-1097(96)00259-8. [DOI] [PubMed] [Google Scholar]
- vom Dahl J., Eitzman D. T., al-Aouar Z. R., Kanter H. L., Hicks R. J., Deeb G. M., Kirsh M. M., Schwaiger M. Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation. 1994 Nov;90(5):2356–2366. doi: 10.1161/01.cir.90.5.2356. [DOI] [PubMed] [Google Scholar]