Skip to main content
Heart logoLink to Heart
. 1999 Dec;82(6):e9. doi: 10.1136/hrt.82.6.e9

Physical activity is a major contributor to the ultra low frequency components of heart rate variability

J Serrador, H Finlayson, R Hughson
PMCID: PMC1729201  PMID: 10573505

Abstract

OBJECTIVE—To investigate the link between changes in level of physical activity and the pattern of heart rate variability during long term ambulatory monitoring.
DESIGN—Heart rate variability was measured simultaneously with a quantitative indicator of muscle activity by electromyography (EMG) in five men and five women while they did activities typical of daily life or while they rested for 2-3 hours. Spectral and cross spectral analyses were performed on both variables with standard fast Fourier transform.
RESULTS—There was a marked reduction in spectral power in the ultra low frequency band (< 0.003 Hz) on going from active to rest conditions for both heart rate variability (men 6187 (1801) v 410 (89) ms2/Hz; women 4056 (1161) v 2094 (801), mean (SEM); p < 0.01) and EMG (p < 0.001). Cross spectral analysis showed a strong positive gain between the EMG and heart rate variability signal that was virtually eliminated in the resting condition (p < 0.01). A sex-by-condition effect (p = 0.06) was noted with a reduction in total spectral power for heart rate variability during rest in men, while it increased slightly in women.
CONCLUSIONS—There is a quantitative link between muscle activation and heart rate variability in the lowest frequency band. Voluntary restriction of physical activity in healthy young subjects caused marked reduction in spectral power in the lowest frequency band which is often used to assess patient prognosis. The findings strongly suggest that studies of ambulatory heart rate variability should always include an indication of physical activity patterns.


Keywords: spectral analysis; electromyography; Holter monitoring; sex effect

Full Text

The Full Text of this article is available as a PDF (113.2 KB).

Figure 1  .

Figure 1  

Beat by beat changes in heart rate and corresponding changes in EMG activity for a typical female subject during both her active and resting trials. EMG data are the weighted average from four muscles, as outlined in Methods.

Figure 2  .

Figure 2  

Changes in spectral power for RR interval (ms2/Hz) and EMG (%MVC2/Hz) in specific frequency bands from active and resting conditions for men and women. Total power spectral density for the RR interval (upper panels). Total spectral power of EMG activity normalised to total spectral power for the active trial (middle panels). Mean gain for those frequencies at which coherence was greater than 0.5 (lower panels, note the change in scale for VLF, LF, and HF frequency bands). All values are means, error bars = SEM. Significant difference between active and resting: *p < 0.05, †p < 0.01, ‡p < 0.005. Significant sex interaction, §p < 0.05. 

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger A. C., Cohen R. J. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981 Jul 10;213(4504):220–222. doi: 10.1126/science.6166045. [DOI] [PubMed] [Google Scholar]
  2. Bernardi L., Valle F., Coco M., Calciati A., Sleight P. Physical activity influences heart rate variability and very-low-frequency components in Holter electrocardiograms. Cardiovasc Res. 1996 Aug;32(2):234–237. doi: 10.1016/0008-6363(96)00081-8. [DOI] [PubMed] [Google Scholar]
  3. Berntson G. G., Bigger J. T., Jr, Eckberg D. L., Grossman P., Kaufmann P. G., Malik M., Nagaraja H. N., Porges S. W., Saul J. P., Stone P. H. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997 Nov;34(6):623–648. doi: 10.1111/j.1469-8986.1997.tb02140.x. [DOI] [PubMed] [Google Scholar]
  4. Bigger J. T., Jr, Fleiss J. L., Steinman R. C., Rolnitzky L. M., Kleiger R. E., Rottman J. N. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation. 1992 Jan;85(1):164–171. doi: 10.1161/01.cir.85.1.164. [DOI] [PubMed] [Google Scholar]
  5. Bigger J. T., Jr, Fleiss J. L., Steinman R. C., Rolnitzky L. M., Schneider W. J., Stein P. K. RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation. 1995 Apr 1;91(7):1936–1943. doi: 10.1161/01.cir.91.7.1936. [DOI] [PubMed] [Google Scholar]
  6. Cooke W. H., Cox J. F., Diedrich A. M., Taylor J. A., Beightol L. A., Ames J. E., 4th, Hoag J. B., Seidel H., Eckberg D. L. Controlled breathing protocols probe human autonomic cardiovascular rhythms. Am J Physiol. 1998 Feb;274(2 Pt 2):H709–H718. doi: 10.1152/ajpheart.1998.274.2.h709. [DOI] [PubMed] [Google Scholar]
  7. Dela F., Mikines K. J., Von Linstow M., Galbo H. Heart rate and plasma catecholamines during 24 h of everyday life in trained and untrained men. J Appl Physiol (1985) 1992 Dec;73(6):2389–2395. doi: 10.1152/jappl.1992.73.6.2389. [DOI] [PubMed] [Google Scholar]
  8. Fei L., Copie X., Malik M., Camm A. J. Short- and long-term assessment of heart rate variability for risk stratification after acute myocardial infarction. Am J Cardiol. 1996 Apr 1;77(9):681–684. doi: 10.1016/s0002-9149(97)89199-0. [DOI] [PubMed] [Google Scholar]
  9. Fleisher L. A., Frank S. M., Sessler D. I., Cheng C., Matsukawa T., Vannier C. A. Thermoregulation and heart rate variability. Clin Sci (Lond) 1996 Feb;90(2):97–103. doi: 10.1042/cs0900097. [DOI] [PubMed] [Google Scholar]
  10. Gregoire J., Tuck S., Yamamoto Y., Hughson R. L. Heart rate variability at rest and exercise: influence of age, gender, and physical training. Can J Appl Physiol. 1996 Dec;21(6):455–470. doi: 10.1139/h96-040. [DOI] [PubMed] [Google Scholar]
  11. Hughson R. L., Maillet A., Gauquelin G., Arbeille P., Yamamoto Y., Gharib C. Investigation of hormonal effects during 10-h head-down tilt on heart rate and blood pressure variability. J Appl Physiol (1985) 1995 Feb;78(2):583–596. doi: 10.1152/jappl.1995.78.2.583. [DOI] [PubMed] [Google Scholar]
  12. Huikuri H. V., Niemelä M. J., Ojala S., Rantala A., Ikäheimo M. J., Airaksinen K. E. Circadian rhythms of frequency domain measures of heart rate variability in healthy subjects and patients with coronary artery disease. Effects of arousal and upright posture. Circulation. 1994 Jul;90(1):121–126. doi: 10.1161/01.cir.90.1.121. [DOI] [PubMed] [Google Scholar]
  13. Huikuri H. V., Pikkujämsä S. M., Airaksinen K. E., Ikäheimo M. J., Rantala A. O., Kauma H., Lilja M., Kesäniemi Y. A. Sex-related differences in autonomic modulation of heart rate in middle-aged subjects. Circulation. 1996 Jul 15;94(2):122–125. doi: 10.1161/01.cir.94.2.122. [DOI] [PubMed] [Google Scholar]
  14. Jensen-Urstad K., Storck N., Bouvier F., Ericson M., Lindblad L. E., Jensen-Urstad M. Heart rate variability in healthy subjects is related to age and gender. Acta Physiol Scand. 1997 Jul;160(3):235–241. doi: 10.1046/j.1365-201X.1997.00142.x. [DOI] [PubMed] [Google Scholar]
  15. Karin J., Hirsch M., Akselrod S. An estimate of fetal autonomic state by spectral analysis of fetal heart rate fluctuations. Pediatr Res. 1993 Aug;34(2):134–138. doi: 10.1203/00006450-199308000-00005. [DOI] [PubMed] [Google Scholar]
  16. Kleiger R. E., Bigger J. T., Bosner M. S., Chung M. K., Cook J. R., Rolnitzky L. M., Steinman R., Fleiss J. L. Stability over time of variables measuring heart rate variability in normal subjects. Am J Cardiol. 1991 Sep 1;68(6):626–630. doi: 10.1016/0002-9149(91)90355-o. [DOI] [PubMed] [Google Scholar]
  17. Marsch S. C., Skarvan K., Schaefer H. G., Naegeli B., Paganoni R., Castelli I., Scheidegger D. Prolonged decrease in heart rate variability after elective hip arthroplasty. Br J Anaesth. 1994 Jun;72(6):643–649. doi: 10.1093/bja/72.6.643. [DOI] [PubMed] [Google Scholar]
  18. Moon J. K., Butte N. F. Combined heart rate and activity improve estimates of oxygen consumption and carbon dioxide production rates. J Appl Physiol (1985) 1996 Oct;81(4):1754–1761. doi: 10.1152/jappl.1996.81.4.1754. [DOI] [PubMed] [Google Scholar]
  19. Osterhues H. H., Hanzel S. R., Kochs M., Hombach V. Influence of physical activity on 24-hour measurements of heart rate variability in patients with coronary artery disease. Am J Cardiol. 1997 Dec 1;80(11):1434–1437. doi: 10.1016/s0002-9149(97)00705-4. [DOI] [PubMed] [Google Scholar]
  20. Patla A. E. Some characteristics of EMG patterns during locomotion: implications for the locomotor control process. J Mot Behav. 1985 Dec;17(4):443–461. doi: 10.1080/00222895.1985.10735360. [DOI] [PubMed] [Google Scholar]
  21. Ponikowski P., Chua T. P., Amadi A. A., Piepoli M., Harrington D., Volterrani M., Colombo R., Mazzuero G., Giordano A., Coats A. J. Detection and significance of a discrete very low frequency rhythm in RR interval variability in chronic congestive heart failure. Am J Cardiol. 1996 Jun 15;77(15):1320–1326. doi: 10.1016/s0002-9149(96)00199-3. [DOI] [PubMed] [Google Scholar]
  22. Ryan S. M., Goldberger A. L., Pincus S. M., Mietus J., Lipsitz L. A. Gender- and age-related differences in heart rate dynamics: are women more complex than men? J Am Coll Cardiol. 1994 Dec;24(7):1700–1707. doi: 10.1016/0735-1097(94)90177-5. [DOI] [PubMed] [Google Scholar]
  23. Taylor J. A., Eckberg D. L. Fundamental relations between short-term RR interval and arterial pressure oscillations in humans. Circulation. 1996 Apr 15;93(8):1527–1532. doi: 10.1161/01.cir.93.8.1527. [DOI] [PubMed] [Google Scholar]
  24. Tsuji H., Larson M. G., Venditti F. J., Jr, Manders E. S., Evans J. C., Feldman C. L., Levy D. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation. 1996 Dec 1;94(11):2850–2855. doi: 10.1161/01.cir.94.11.2850. [DOI] [PubMed] [Google Scholar]
  25. Tsuji H., Venditti F. J., Jr, Manders E. S., Evans J. C., Larson M. G., Feldman C. L., Levy D. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994 Aug;90(2):878–883. doi: 10.1161/01.cir.90.2.878. [DOI] [PubMed] [Google Scholar]
  26. Valkama J. O., Huikuri H. V., Airaksinen K. E., Linnaluoto M. L., Takkunen J. T. Determinants of frequency domain measures of heart rate variability in the acute and convalescent phases of myocardial infarction. Cardiovasc Res. 1994 Aug;28(8):1273–1276. doi: 10.1093/cvr/28.8.1273. [DOI] [PubMed] [Google Scholar]
  27. Vissing S. F., Scherrer U., Victor R. G. Relation between sympathetic outflow and vascular resistance in the calf during perturbations in central venous pressure. Evidence for cardiopulmonary afferent regulation of calf vascular resistance in humans. Circ Res. 1989 Dec;65(6):1710–1717. doi: 10.1161/01.res.65.6.1710. [DOI] [PubMed] [Google Scholar]
  28. Yamamoto Y., Nakamura Y., Sato H., Yamamoto M., Kato K., Hughson R. L. On the fractal nature of heart rate variability in humans: effects of vagal blockade. Am J Physiol. 1995 Oct;269(4 Pt 2):R830–R837. doi: 10.1152/ajpregu.1995.269.4.R830. [DOI] [PubMed] [Google Scholar]
  29. Yeragani V. K., Sobolewski E., Kay J., Jampala V. C., Igel G. Effect of age on long-term heart rate variability. Cardiovasc Res. 1997 Jul;35(1):35–42. doi: 10.1016/s0008-6363(97)00107-7. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES