Abstract
BACKGROUND—Following neonatal open heart surgery a nadir occurs in left ventricular function six to 12 hours after cardiopulmonary bypass. Although initiated by intraoperative events, little is known about the mechanisms involved. OBJECTIVE—To evaluate the involvement of nitric oxide in this late phase dysfunction in piglets. DESIGN—Piglets aged 2 to 3 weeks (4-5 kg) underwent cardiopulmonary bypass (1 h) and cardioplegic arrest (0.5 h) and then remained ventilated with inotropic support. Twelve hours after bypass, while receiving dobutamine (5 µg/kg/min), the left ventricular response to non-selective nitric oxide synthase inhibition (l-NG-monomethylarginine (l-NMMA)) was evaluated using load dependent and load independent indices (Ees, the slope of the end systolic pressure-volume relation; Mw, the slope of the stroke work-end diastolic volume relation; [dP/dtmax]edv, the slope of the dP/dtmax-end diastolic volume relation), derived from left ventricular pressure-volume loops generated by conductance and microtip pressure catheters. RESULTS—10 pigs received 7.5 mg l-NMMA intravenously and six of these received two additional doses (37.5 mg and 75 mg). Ees (mean (SD)) increased with all three doses, from 54.9 (40.1) mm Hg/ml (control) to 86.3 (69.5) at 7.5 mg, 117.9 (65.1) at 37.5 mg, and 119 (80.4) at 75 mg (p < 0.05). At the two highest doses, [dP/dtmax]edv increased from 260.8 (209.3) (control) to 470.5 (22.8) at 37.5 mg and 474.1 (296.6) at 75 mg (p < 0.05); and end diastolic pressure decreased from 16.5 (5.6) mm Hg (control) to 11.3 (5.0) at 37.5 mg and 11.4 (4.9) at 75 mg (p < 0.05). CONCLUSIONS—In neonatal pigs 12 hours after cardiopulmonary bypass with ischaemic arrest, low dose l-NMMA improved left ventricular function, implying that there is a net deleterious cardiac action of nitric oxide at this time. Keywords: ventricular function; nitric oxide; neonatal pigs; cardiovascular surgery; paediatric cardiology
Full Text
The Full Text of this article is available as a PDF (94.2 KB).
Figure 1 .
Dose-response of selected indices of left ventricular function to l-NG-monomethylarginine (l-NMMA); points are means, error bars = SEM; filled circles are significantly different from control at p < 0.05. [dP/dtmax]edv, slope of the dP/dtmax-end diastolic volume relation; Ees, slope of the end systolic pressure-volume relation; Mw, slope of the stroke work-end diastolic volume relation; Ped, left ventricular end diastolic pressure.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baan J., van der Velde E. T., de Bruin H. G., Smeenk G. J., Koops J., van Dijk A. D., Temmerman D., Senden J., Buis B. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation. 1984 Nov;70(5):812–823. doi: 10.1161/01.cir.70.5.812. [DOI] [PubMed] [Google Scholar]
- Balligand J. L., Cannon P. J. Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arterioscler Thromb Vasc Biol. 1997 Oct;17(10):1846–1858. doi: 10.1161/01.atv.17.10.1846. [DOI] [PubMed] [Google Scholar]
- Breisblatt W. M., Stein K. L., Wolfe C. J., Follansbee W. P., Capozzi J., Armitage J. M., Hardesty R. L. Acute myocardial dysfunction and recovery: a common occurrence after coronary bypass surgery. J Am Coll Cardiol. 1990 May;15(6):1261–1269. doi: 10.1016/s0735-1097(10)80011-7. [DOI] [PubMed] [Google Scholar]
- Burrows F. A., Williams W. G., Teoh K. H., Wood A. E., Burns J., Edmonds J., Barker G. A., Trusler G. A., Weisel R. D. Myocardial performance after repair of congenital cardiac defects in infants and children. Response to volume loading. J Thorac Cardiovasc Surg. 1988 Oct;96(4):548–556. [PubMed] [Google Scholar]
- Chaturvedi R. R., Lincoln C., Gothard J. W., Scallan M. H., White P. A., Redington A. N., Shore D. F. Left ventricular dysfunction after open repair of simple congenital heart defects in infants and children: quantitation with the use of a conductance catheter immediately after bypass. J Thorac Cardiovasc Surg. 1998 Jan;115(1):77–83. doi: 10.1016/s0022-5223(98)70446-5. [DOI] [PubMed] [Google Scholar]
- Crystal G. J., Gurevicius J. Nitric oxide does not modulate myocardial contractility acutely in in situ canine hearts. Am J Physiol. 1996 May;270(5 Pt 2):H1568–H1576. doi: 10.1152/ajpheart.1996.270.5.H1568. [DOI] [PubMed] [Google Scholar]
- Hare J. M., Loh E., Creager M. A., Colucci W. S. Nitric oxide inhibits the positive inotropic response to beta-adrenergic stimulation in humans with left ventricular dysfunction. Circulation. 1995 Oct 15;92(8):2198–2203. doi: 10.1161/01.cir.92.8.2198. [DOI] [PubMed] [Google Scholar]
- Herbertson M. J., Werner H. A., Walley K. R. Nitric oxide synthase inhibition partially prevents decreased LV contractility during endotoxemia. Am J Physiol. 1996 Jun;270(6 Pt 2):H1979–H1984. doi: 10.1152/ajpheart.1996.270.6.H1979. [DOI] [PubMed] [Google Scholar]
- Hiramatsu T., Forbess J. M., Miura T., Mayer J. E., Jr Effects of L-arginine and L-nitro-arginine methyl ester on recovery of neonatal lamb hearts after cold ischemia. Evidence for an important role of endothelial production of nitric oxide. J Thorac Cardiovasc Surg. 1995 Jan;109(1):81–87. doi: 10.1016/S0022-5223(95)70423-X. [DOI] [PubMed] [Google Scholar]
- Huk I., Nanobashvili J., Neumayer C., Punz A., Mueller M., Afkhampour K., Mittlboeck M., Losert U., Polterauer P., Roth E. L-arginine treatment alters the kinetics of nitric oxide and superoxide release and reduces ischemia/reperfusion injury in skeletal muscle. Circulation. 1997 Jul 15;96(2):667–675. doi: 10.1161/01.cir.96.2.667. [DOI] [PubMed] [Google Scholar]
- Laszlo F., Whittle B. J., Moncada S. Time-dependent enhancement or inhibition of endotoxin-induced vascular injury in rat intestine by nitric oxide synthase inhibitors. Br J Pharmacol. 1994 Apr;111(4):1309–1315. doi: 10.1111/j.1476-5381.1994.tb14887.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis N. P., Tsao P. S., Rickenbacher P. R., Xue C., Johns R. A., Haywood G. A., von der Leyen H., Trindade P. T., Cooke J. P., Hunt S. A. Induction of nitric oxide synthase in the human cardiac allograft is associated with contractile dysfunction of the left ventricle. Circulation. 1996 Feb 15;93(4):720–729. doi: 10.1161/01.cir.93.4.720. [DOI] [PubMed] [Google Scholar]
- Little W. C., Cheng C. P., Mumma M., Igarashi Y., Vinten-Johansen J., Johnston W. E. Comparison of measures of left ventricular contractile performance derived from pressure-volume loops in conscious dogs. Circulation. 1989 Nov;80(5):1378–1387. doi: 10.1161/01.cir.80.5.1378. [DOI] [PubMed] [Google Scholar]
- Mangano D. T. Biventricular function after myocardial revascularization in humans: deterioration and recovery patterns during the first 24 hours. Anesthesiology. 1985 May;62(5):571–577. doi: 10.1097/00000542-198505000-00005. [DOI] [PubMed] [Google Scholar]
- Menasché P. The inflammatory response to cardiopulmonary bypass and its impact on postoperative myocardial function. Curr Opin Cardiol. 1995 Nov;10(6):597–604. [PubMed] [Google Scholar]
- Morita K., Ihnken K., Buckberg G. D., Sherman M. P., Young H. H., Ignarro L. J. Role of controlled cardiac reoxygenation in reducing nitric oxide production and cardiac oxidant damage in cyanotic infantile hearts. J Clin Invest. 1994 Jun;93(6):2658–2666. doi: 10.1172/JCI117279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakanishi K., Zhao Z. Q., Vinten-Johansen J., Hudspeth D. A., McGee D. S., Hammon J. W., Jr Blood cardioplegia enhanced with nitric oxide donor SPM-5185 counteracts postischemic endothelial and ventricular dysfunction. J Thorac Cardiovasc Surg. 1995 Jun;109(6):1146–1154. doi: 10.1016/S0022-5223(95)70198-2. [DOI] [PubMed] [Google Scholar]
- Naseem S. A., Kontos M. C., Rao P. S., Jesse R. L., Hess M. L., Kukreja R. C. Sustained inhibition of nitric oxide by NG-nitro-L-arginine improves myocardial function following ischemia/reperfusion in isolated perfused rat heart. J Mol Cell Cardiol. 1995 Jan;27(1):419–426. doi: 10.1016/s0022-2828(08)80038-7. [DOI] [PubMed] [Google Scholar]
- Pabla R., Buda A. J., Flynn D. M., Salzberg D. B., Lefer D. J. Intracoronary nitric oxide improves postischemic coronary blood flow and myocardial contractile function. Am J Physiol. 1995 Sep;269(3 Pt 2):H1113–H1121. doi: 10.1152/ajpheart.1995.269.3.H1113. [DOI] [PubMed] [Google Scholar]
- Saeki A., Recchia F. A., Senzaki H., Kass D. A. Minimal role of nitric oxide in basal coronary flow regulation and cardiac energetics of blood-perfused isolated canine heart. J Physiol. 1996 Mar 1;491(Pt 2):455–463. doi: 10.1113/jphysiol.1996.sp021229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seghaye M. C., Duchateau J., Bruniaux J., Demontoux S., Détruit H., Bosson C., Lecronier G., Mokhfi E., Serraf A., Planché C. Endogenous nitric oxide production and atrial natriuretic peptide biological activity in infants undergoing cardiac operations. Crit Care Med. 1997 Jun;25(6):1063–1070. doi: 10.1097/00003246-199706000-00026. [DOI] [PubMed] [Google Scholar]
- Wernovsky G., Wypij D., Jonas R. A., Mayer J. E., Jr, Hanley F. L., Hickey P. R., Walsh A. Z., Chang A. C., Castañeda A. R., Newburger J. W. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation. 1995 Oct 15;92(8):2226–2235. doi: 10.1161/01.cir.92.8.2226. [DOI] [PubMed] [Google Scholar]
- Weyrich A. S., Ma X. L., Buerke M., Murohara T., Armstead V. E., Lefer A. M., Nicolas J. M., Thomas A. P., Lefer D. J., Vinten-Johansen J. Physiological concentrations of nitric oxide do not elicit an acute negative inotropic effect in unstimulated cardiac muscle. Circ Res. 1994 Oct;75(4):692–700. doi: 10.1161/01.res.75.4.692. [DOI] [PubMed] [Google Scholar]
- Weyrich A. S., Ma X. L., Lefer A. M. The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circulation. 1992 Jul;86(1):279–288. doi: 10.1161/01.cir.86.1.279. [DOI] [PubMed] [Google Scholar]
- White P. A., Chaturvedi R. R., Shore D., Lincoln C., Szwarc R. S., Bishop A. J., Oldershaw P. J., Redington A. N. Left ventricular parallel conductance during cardiac cycle in children with congenital heart disease. Am J Physiol. 1997 Jul;273(1 Pt 2):H295–H302. doi: 10.1152/ajpheart.1997.273.1.H295. [DOI] [PubMed] [Google Scholar]
- de Belder A. J., Radomski M. W., Why H. J., Richardson P. J., Martin J. F. Myocardial calcium-independent nitric oxide synthase activity is present in dilated cardiomyopathy, myocarditis, and postpartum cardiomyopathy but not in ischaemic or valvar heart disease. Br Heart J. 1995 Oct;74(4):426–430. doi: 10.1136/hrt.74.4.426. [DOI] [PMC free article] [PubMed] [Google Scholar]