Skip to main content
Heart logoLink to Heart
. 1999 Dec;82(6):726–730. doi: 10.1136/hrt.82.6.726

External cardioversion of atrial fibrillation: role of paddle position on technical efficacy and energy requirements

G Botto 1, A Politi 1, W Bonini 1, T Broffoni 1, R Bonatti 1
PMCID: PMC1729223  PMID: 10573502

Abstract

AIM—To define the effect of defibrillator paddle position on technical success and dc shock energy requirements of external cardioversion of atrial fibrillation.
METHODS—301 patients (mean (SD) age 62 (11) years) with stable atrial fibrillation were randomly assigned to elective external cardioversion using anterolateral paddle position (ventricular apex-right infraclavicular area; group AL (151 patients)) or anteroposterior paddle position (sternal body-angle of the left scapula; group AP (150 patients)). A step up protocol was used, delivering a 3 J/kg body weight dc shock, then a 4 J/kg shock (maximum 360 J), and finally a second 4 J/kg shock using the alternative paddle location.
RESULTS—The two groups were comparable for the all clinical variables evaluated. The cumulative percentage of patients successfully converted to sinus rhythm was 58% in group AL and 67% in group AP with low energy dc shock (NS); this rose to 76% in group AL and to 87% in group AP with high energy dc shock (p = 0.013). Thirty seven patients in group AL and 19 in group AP experienced dc shock with the alternative paddle position; atrial fibrillation persisted in 10/37 in group AL and in 10/19 in group AP. Mean dc shock energy requirements were lower for group AP patients than for group AL patients, at 383 (235) v 451 (287) J, p = 0.025. Arrhythmia duration was the only factor that affected the technical success of external cardioversion (successful: 281 patients, 80 (109) days; unsuccessful: 20 patients, 193 (229) days; p < 0.0001). The success rate was lower if atrial fibrillation persisted for > 6 months: 29 of 37 (78%) v 252 of 264 (95%); p = 0.0001.
CONCLUSIONS—An anteroposterior defibrillator paddle position is superior to an anterolateral location with regard to technical success in external cardioversion of stable atrial fibrillation, and permits lower dc shock energy requirements. Arrhythmia duration is the only clinical variable that can limit the restoration of sinus rhythm.


Keywords: atrial fibrillation; cardioversion; electric countershock

Full Text

The Full Text of this article is available as a PDF (95.3 KB).

Figure 1  .

Figure 1  

Electrode positions: anterolateral = ventricular apex-right infraclavicular area paddle position; (modified) anteroposterior = right sternal body at the third intercostal space-angle of the left scapula paddle position. Front, front view; rear, rear view.

Figure 2  .

Figure 2  

Success rate for each treatment group after 3 J/kg body weight dc shock, then 4 J/kg shock, and finally a second 4 J/kg shock after crossover of the electrode paddle position. Group AL, anterolateral paddle position; Group AP, anteroposterior paddle position

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Connell P. N., Ewy G. A., Dahl C. F., Ewy M. D. Transthoracic impedance to defibrillator discharge. Effect of electrode size and electrode-chest wall interface. J Electrocardiol. 1973;6(4):313–31M. doi: 10.1016/s0022-0736(73)80053-6. [DOI] [PubMed] [Google Scholar]
  2. Costeas C., Kassotis J., Blitzer M., Reiffel J. A. Rhythm management in atrial fibrillation--with a primary emphasis on pharmacological therapy: Part 2. Pacing Clin Electrophysiol. 1998 Apr;21(4 Pt 1):742–752. doi: 10.1111/j.1540-8159.1998.tb00132.x. [DOI] [PubMed] [Google Scholar]
  3. Dahl C. F., Ewy G. A., Ewy M. D., Thomas E. D. Transthoracic impedance to direct current discharge: effect of repeated countershocks. Med Instrum. 1976 May-Jun;10(3):151–154. [PubMed] [Google Scholar]
  4. DeSilva R. A., Graboys T. B., Podrid P. J., Lown B. Cardioversion and defibrillation. Am Heart J. 1980 Dec;100(6 Pt 1):881–895. doi: 10.1016/0002-8703(80)90071-x. [DOI] [PubMed] [Google Scholar]
  5. Ditchey R. V., LeWinter M. M. Effects of direct-current electrical shocks on systolic and diastolic left ventricular function in dogs. Am Heart J. 1983 May;105(5):727–731. doi: 10.1016/0002-8703(83)90232-6. [DOI] [PubMed] [Google Scholar]
  6. Ewy G. A. Cardiac arrest and resuscitation: defibrillators and defibrillation. Curr Probl Cardiol. 1978 Feb;2(11):1–71. doi: 10.1016/0146-2806(78)90019-1. [DOI] [PubMed] [Google Scholar]
  7. Ewy G. A., Dahl C. F. Direct current shock and transcardiac impedance. Am J Cardiol. 1980 Apr;45(4):909–909. doi: 10.1016/0002-9149(80)90149-6. [DOI] [PubMed] [Google Scholar]
  8. Ewy G. A., Hellman D. A., McClung S., Taren D. Influence of ventilation phase on transthoracic impedance and defibrillation effectiveness. Crit Care Med. 1980 Mar;8(3):164–166. doi: 10.1097/00003246-198003000-00015. [DOI] [PubMed] [Google Scholar]
  9. Ewy G. A., Horan W. J. Effectiveness of direct current defibrillation: role of paddle electrode size: II. Am Heart J. 1977 May;93(5):674–675. doi: 10.1016/s0002-8703(77)80021-5. [DOI] [PubMed] [Google Scholar]
  10. Ewy G. A. Optimal technique for electrical cardioversion of atrial fibrillation. Circulation. 1992 Nov;86(5):1645–1647. doi: 10.1161/01.cir.86.5.1645. [DOI] [PubMed] [Google Scholar]
  11. Ewy G. A., Taren D. Comparison of paddle electrode pastes used for defibrillation. Heart Lung. 1977 Sep-Oct;6(5):847–850. [PubMed] [Google Scholar]
  12. Goette A., Honeycutt C., Langberg J. J. Electrical remodeling in atrial fibrillation. Time course and mechanisms. Circulation. 1996 Dec 1;94(11):2968–2974. doi: 10.1161/01.cir.94.11.2968. [DOI] [PubMed] [Google Scholar]
  13. Henry W. L., Morganroth J., Pearlman A. S., Clark C. E., Redwood D. R., Itscoitz S. B., Epstein S. E. Relation between echocardiographically determined left atrial size and atrial fibrillation. Circulation. 1976 Feb;53(2):273–279. doi: 10.1161/01.cir.53.2.273. [DOI] [PubMed] [Google Scholar]
  14. Kerber R. E., Jensen S. R., Grayzel J., Kennedy J., Hoyt R. Elective cardioversion: influence of paddle-electrode location and size on success rates and energy requirements. N Engl J Med. 1981 Sep 17;305(12):658–662. doi: 10.1056/NEJM198109173051202. [DOI] [PubMed] [Google Scholar]
  15. Kerber R. E., Martins J. B., Kelly K. J., Ferguson D. W., Kouba C., Jensen S. R., Newman B., Parke J. D., Kieso R., Melton J. Self-adhesive preapplied electrode pads for defibrillation and cardioversion. J Am Coll Cardiol. 1984 Mar;3(3):815–820. doi: 10.1016/s0735-1097(84)80258-2. [DOI] [PubMed] [Google Scholar]
  16. Kerber R. E., Martins J. B., Kienzle M. G., Constantin L., Olshansky B., Hopson R., Charbonnier F. Energy, current, and success in defibrillation and cardioversion: clinical studies using an automated impedance-based method of energy adjustment. Circulation. 1988 May;77(5):1038–1046. doi: 10.1161/01.cir.77.5.1038. [DOI] [PubMed] [Google Scholar]
  17. Kerber R. E. Transthoracic cardioversion of atrial fibrillation and flutter: standard techniques and new advances. Am J Cardiol. 1996 Oct 17;78(8A):22–26. doi: 10.1016/s0002-9149(96)00562-0. [DOI] [PubMed] [Google Scholar]
  18. LOWN B., AMARASINGHAM R., NEUMAN J. New method for terminating cardiac arrhythmias. Use of synchronized capacitor discharge. JAMA. 1962 Nov 3;182:548–555. [PubMed] [Google Scholar]
  19. LOWN B., PERLROTH M. G., KAIDBEY S., ABE T., HARKEN D. E. "Cardioversion" of atrial fibrillation. A report on the treatment of 65 episodes in 50 patients. N Engl J Med. 1963 Aug 15;269:325–331. doi: 10.1056/NEJM196308152690701. [DOI] [PubMed] [Google Scholar]
  20. Lown B. Electrical reversion of cardiac arrhythmias. Br Heart J. 1967 Jul;29(4):469–489. doi: 10.1136/hrt.29.4.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lévy S., Lauribe P., Dolla E., Kou W., Kadish A., Calkins H., Pagannelli F., Moyal C., Bremondy M., Schork A. A randomized comparison of external and internal cardioversion of chronic atrial fibrillation. Circulation. 1992 Nov;86(5):1415–1420. doi: 10.1161/01.cir.86.5.1415. [DOI] [PubMed] [Google Scholar]
  22. Murgatroyd F. D., Slade A. K., Sopher S. M., Rowland E., Ward D. E., Camm A. J. Efficacy and tolerability of transvenous low energy cardioversion of paroxysmal atrial fibrillation in humans. J Am Coll Cardiol. 1995 May;25(6):1347–1353. doi: 10.1016/0735-1097(94)00555-5. [DOI] [PubMed] [Google Scholar]
  23. Ricard P., Lévy S., Trigano J., Paganelli F., Daoud E., Man K. C., Strickberger S. A., Morady F. Prospective assessment of the minimum energy needed for external electrical cardioversion of atrial fibrillation. Am J Cardiol. 1997 Mar 15;79(6):815–816. doi: 10.1016/s0002-9149(96)00879-x. [DOI] [PubMed] [Google Scholar]
  24. Sans S. Does change in serum cholesterol of a population influence coronary heart disease mortality? Eur Heart J. 1997 Apr;18(4):540–543. doi: 10.1093/oxfordjournals.eurheartj.a015290. [DOI] [PubMed] [Google Scholar]
  25. Schmitt C., Alt E., Plewan A., Ammer R., Leibig M., Karch M., Schömig A. Low energy intracardiac cardioversion after failed conventional external cardioversion of atrial fibrillation. J Am Coll Cardiol. 1996 Oct;28(4):994–999. doi: 10.1016/s0735-1097(96)00274-4. [DOI] [PubMed] [Google Scholar]
  26. Sermasi S., Marconi M., Cioppi F. Cardioversione elettrica di elezione della fibrillazione atriale non isolata nell'adulto: proposta di ottimizzazione della procedura. G Ital Cardiol. 1995 Nov;25(11):1399–1406. [PubMed] [Google Scholar]
  27. Thomas E. D., Ewy G. A., Dahl C. F., Ewy M. D. Effectiveness of direct current defibrillation: role of paddle electrode size. Am Heart J. 1977 Apr;93(4):463–467. doi: 10.1016/s0002-8703(77)80409-2. [DOI] [PubMed] [Google Scholar]
  28. Wijffels M. C., Kirchhof C. J., Dorland R., Allessie M. A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995 Oct 1;92(7):1954–1968. doi: 10.1161/01.cir.92.7.1954. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES