Skip to main content
Clinical Microbiology Reviews logoLink to Clinical Microbiology Reviews
. 1997 Jul;10(3):419–443. doi: 10.1128/cmr.10.3.419

Experimental investigation of herpes simplex virus latency.

E K Wagner 1, D C Bloom 1
PMCID: PMC172928  PMID: 9227860

Abstract

The clinical manifestations of herpes simplex virus infection generally involve a mild and localized primary infection followed by asymptomatic (latent) infection interrupted sporadically by periods of recrudescence (reactivation) where virus replication and associated cytopathologic findings are manifest at the site of initial infection. During the latent phase of infection, viral genomes, but not infectious virus itself, can be detected in sensory and autonomic neurons. The process of latent infection and reactivation has been subject to continuing investigation in animal models and, more recently, in cultured cells. The initiation and maintenance of latent infection in neurons are apparently passive phenomena in that no virus gene products need be expressed or are required. Despite this, a single latency-associated transcript (LAT) encoded by DNA encompassing about 6% of the viral genome is expressed during latent infection in a minority of neurons containing viral DNA. This transcript is spliced, and the intron derived from this splicing is stably maintained in the nucleus of neurons expressing it. Reactivation, which can be induced by stress and assayed in several animal models, is facilitated by the expression of LAT. Although the mechanism of action of LAT-mediated facilitation of reactivation is not clear, all available evidence argues against its involving the expression of a protein. Rather, the most consistent models of action involve LAT expression playing a cis-acting role in a very early stage of the reactivation process.

Full Text

The Full Text of this article is available as a PDF (415.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agut H., Dupin N., Aubin J. T., Huraux J. M. L'herpesvirus humain 8. Transfus Clin Biol. 1996;3(1):51–56. doi: 10.1016/s1246-7820(96)80013-9. [DOI] [PubMed] [Google Scholar]
  2. Arthur J., Efstathiou S., Simmons A. Intranuclear foci containing low abundance herpes simplex virus latency-associated transcripts visualized by non-isotopic in situ hybridization. J Gen Virol. 1993 Jul;74(Pt 7):1363–1370. doi: 10.1099/0022-1317-74-7-1363. [DOI] [PubMed] [Google Scholar]
  3. Baringer J. R., Pisani P. Herpes simplex virus genomes in human nervous system tissue analyzed by polymerase chain reaction. Ann Neurol. 1994 Dec;36(6):823–829. doi: 10.1002/ana.410360605. [DOI] [PubMed] [Google Scholar]
  4. Baringer J. R. Recovery of herpes simplex virus from human sacral ganglions. N Engl J Med. 1974 Oct 17;291(16):828–830. doi: 10.1056/NEJM197410172911606. [DOI] [PubMed] [Google Scholar]
  5. Baringer J. R., Swoveland P. Recovery of herpes-simplex virus from human trigeminal ganglions. N Engl J Med. 1973 Mar 29;288(13):648–650. doi: 10.1056/NEJM197303292881303. [DOI] [PubMed] [Google Scholar]
  6. Bastian F. O., Rabson A. S., Yee C. L., Tralka T. S. Herpesvirus hominis: isolation from human trigeminal ganglion. Science. 1972 Oct 20;178(4058):306–307. doi: 10.1126/science.178.4058.306. [DOI] [PubMed] [Google Scholar]
  7. Batchelor A. H., O'Hare P. Localization of cis-acting sequence requirements in the promoter of the latency-associated transcript of herpes simplex virus type 1 required for cell-type-specific activity. J Virol. 1992 Jun;66(6):3573–3582. doi: 10.1128/jvi.66.6.3573-3582.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Batchelor A. H., O'Hare P. Regulation and cell-type-specific activity of a promoter located upstream of the latency-associated transcript of herpes simplex virus type 1. J Virol. 1990 Jul;64(7):3269–3279. doi: 10.1128/jvi.64.7.3269-3279.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Batchelor A. H., Wilcox K. W., O'Hare P. Binding and repression of the latency-associated promoter of herpes simplex virus by the immediate early 175K protein. J Gen Virol. 1994 Apr;75(Pt 4):753–767. doi: 10.1099/0022-1317-75-4-753. [DOI] [PubMed] [Google Scholar]
  10. Baxi M. K., Efstathiou S., Lawrence G., Whalley J. M., Slater J. D., Field H. J. The detection of latency-associated transcripts of equine herpesvirus 1 in ganglionic neurons. J Gen Virol. 1995 Dec;76(Pt 12):3113–3118. doi: 10.1099/0022-1317-76-12-3113. [DOI] [PubMed] [Google Scholar]
  11. Benedetti J., Corey L., Ashley R. Recurrence rates in genital herpes after symptomatic first-episode infection. Ann Intern Med. 1994 Dec 1;121(11):847–854. doi: 10.7326/0003-4819-121-11-199412010-00004. [DOI] [PubMed] [Google Scholar]
  12. Bergström T., Lycke E. Neuroinvasion by herpes simplex virus. An in vitro model for characterization of neurovirulent strains. J Gen Virol. 1990 Feb;71(Pt 2):405–410. doi: 10.1099/0022-1317-71-2-405. [DOI] [PubMed] [Google Scholar]
  13. Berman E. J., Hill J. M. Spontaneous ocular shedding of HSV-1 in latently infected rabbits. Invest Ophthalmol Vis Sci. 1985 Apr;26(4):587–590. [PubMed] [Google Scholar]
  14. Block T. M., Deshmane S., Masonis J., Maggioncalda J., Valyi-Nagi T., Fraser N. W. An HSV LAT null mutant reactivates slowly from latent infection and makes small plaques on CV-1 monolayers. Virology. 1993 Feb;192(2):618–630. doi: 10.1006/viro.1993.1078. [DOI] [PubMed] [Google Scholar]
  15. Block T. M., Spivack J. G., Steiner I., Deshmane S., McIntosh M. T., Lirette R. P., Fraser N. W. A herpes simplex virus type 1 latency-associated transcript mutant reactivates with normal kinetics from latent infection. J Virol. 1990 Jul;64(7):3417–3426. doi: 10.1128/jvi.64.7.3417-3426.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bloom D. C., Devi-Rao G. B., Hill J. M., Stevens J. G., Wagner E. K. Molecular analysis of herpes simplex virus type 1 during epinephrine-induced reactivation of latently infected rabbits in vivo. J Virol. 1994 Mar;68(3):1283–1292. doi: 10.1128/jvi.68.3.1283-1292.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bloom D. C., Hill J. M., Devi-Rao G., Wagner E. K., Feldman L. T., Stevens J. G. A 348-base-pair region in the latency-associated transcript facilitates herpes simplex virus type 1 reactivation. J Virol. 1996 Apr;70(4):2449–2459. doi: 10.1128/jvi.70.4.2449-2459.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bloom D. C., Stevens J. G. Neuron-specific restriction of a herpes simplex virus recombinant maps to the UL5 gene. J Virol. 1994 Jun;68(6):3761–3772. doi: 10.1128/jvi.68.6.3761-3772.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Bohenzky R. A., Lagunoff M., Roizman B., Wagner E. K., Silverstein S. Two overlapping transcription units which extend across the L-S junction of herpes simplex virus type 1. J Virol. 1995 May;69(5):2889–2897. doi: 10.1128/jvi.69.5.2889-2897.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Bolovan C. A., Sawtell N. M., Thompson R. L. ICP34.5 mutants of herpes simplex virus type 1 strain 17syn+ are attenuated for neurovirulence in mice and for replication in confluent primary mouse embryo cell cultures. J Virol. 1994 Jan;68(1):48–55. doi: 10.1128/jvi.68.1.48-55.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bourne N., Stanberry L. R., Connelly B. L., Kurawadwala J., Straus S. E., Krause P. R. Quantity of latency-associated transcript produced by herpes simplex virus is not predictive of the frequency of experimental recurrent genital herpes. J Infect Dis. 1994 May;169(5):1084–1087. doi: 10.1093/infdis/169.5.1084. [DOI] [PubMed] [Google Scholar]
  22. Bratcher D. F., Harrison C. J., Bourne N., Stanberry L. R., Bernstein D. I. Effect of indomethacin on ultraviolet radiation-induced recurrent herpes simplex virus disease in guinea-pigs. J Gen Virol. 1993 Sep;74(Pt 9):1951–1954. doi: 10.1099/0022-1317-74-9-1951. [DOI] [PubMed] [Google Scholar]
  23. Brown S. M., Harland J., MacLean A. R., Podlech J., Clements J. B. Cell type and cell state determine differential in vitro growth of non-neurovirulent ICP34.5-negative herpes simplex virus types 1 and 2. J Gen Virol. 1994 Sep;75(Pt 9):2367–2377. doi: 10.1099/0022-1317-75-9-2367. [DOI] [PubMed] [Google Scholar]
  24. Cabrera C. V., Wohlenberg C., Openshaw H., Rey-Mendez M., Puga A., Notkins A. L. Herpes simplex virus DNA sequences in the CNS of latently infected mice. Nature. 1980 Nov 20;288(5788):288–290. doi: 10.1038/288288a0. [DOI] [PubMed] [Google Scholar]
  25. Cantello J. L., Anderson A. S., Morgan R. W. Identification of latency-associated transcripts that map antisense to the ICP4 homolog gene of Marek's disease virus. J Virol. 1994 Oct;68(10):6280–6290. doi: 10.1128/jvi.68.10.6280-6290.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Carter K. L., Roizman B. The promoter and transcriptional unit of a novel herpes simplex virus 1 alpha gene are contained in, and encode a protein in frame with, the open reading frame of the alpha 22 gene. J Virol. 1996 Jan;70(1):172–178. doi: 10.1128/jvi.70.1.172-178.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Chen X., Schmidt M. C., Goins W. F., Glorioso J. C. Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections. J Virol. 1995 Dec;69(12):7899–7908. doi: 10.1128/jvi.69.12.7899-7908.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Cheung A. K. Detection of pseudorabies virus transcripts in trigeminal ganglia of latently infected swine. J Virol. 1989 Jul;63(7):2908–2913. doi: 10.1128/jvi.63.7.2908-2913.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Chou J., Kern E. R., Whitley R. J., Roizman B. Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science. 1990 Nov 30;250(4985):1262–1266. doi: 10.1126/science.2173860. [DOI] [PubMed] [Google Scholar]
  30. Chou J., Roizman B. The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3266–3270. doi: 10.1073/pnas.89.8.3266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Clements G. B., Subak-Sharpe J. H. Herpes simplex virus type 2 establishes latency in the mouse footpad. J Gen Virol. 1988 Feb;69(Pt 2):375–383. doi: 10.1099/0022-1317-69-2-375. [DOI] [PubMed] [Google Scholar]
  32. Clough D. W., Kunkel L. M., Davidson R. L. 5-Azacytidine-induced reactivation of a herpes simplex thymidine kinase gene. Science. 1982 Apr 2;216(4541):70–73. doi: 10.1126/science.6175023. [DOI] [PubMed] [Google Scholar]
  33. Cohrs R. J., Barbour M. B., Mahalingam R., Wellish M., Gilden D. H. Varicella-zoster virus (VZV) transcription during latency in human ganglia: prevalence of VZV gene 21 transcripts in latently infected human ganglia. J Virol. 1995 Apr;69(4):2674–2678. doi: 10.1128/jvi.69.4.2674-2678.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Cohrs R. J., Srock K., Barbour M. B., Owens G., Mahalingam R., Devlin M. E., Wellish M., Gilden D. H. Varicella-zoster virus (VZV) transcription during latency in human ganglia: construction of a cDNA library from latently infected human trigeminal ganglia and detection of a VZV transcript. J Virol. 1994 Dec;68(12):7900–7908. doi: 10.1128/jvi.68.12.7900-7908.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Cone R. W., Hobson A. C., Palmer J., Remington M., Corey L. Extended duration of herpes simplex virus DNA in genital lesions detected by the polymerase chain reaction. J Infect Dis. 1991 Oct;164(4):757–760. doi: 10.1093/infdis/164.4.757. [DOI] [PubMed] [Google Scholar]
  36. Cook M. L., Stevens J. G. Latent herpetic infections following experimental viraemia. J Gen Virol. 1976 Apr;31(1):75–80. doi: 10.1099/0022-1317-31-1-75. [DOI] [PubMed] [Google Scholar]
  37. Cook M. L., Stevens J. G. Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infect Immun. 1973 Feb;7(2):272–288. doi: 10.1128/iai.7.2.272-288.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Cook S. D., Batra S. K., Brown S. M. Recovery of herpes simplex virus from the corneas of experimentally infected rabbits. J Gen Virol. 1987 Jul;68(Pt 7):2013–2017. doi: 10.1099/0022-1317-68-7-2013. [DOI] [PubMed] [Google Scholar]
  39. Cook S. D., Hill J. M., Lynas C., Maitland N. J. Latency-associated transcripts in corneas and ganglia of HSV-1 infected rabbits. Br J Ophthalmol. 1991 Nov;75(11):644–648. doi: 10.1136/bjo.75.11.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Corbellino M., Bestetti G., Poirel L., Aubin J. T., Brambilla L., Pizzuto M., Capra M., Berti E., Galli M., Parravicini C. Is human herpesvirus type 8 fairly prevalent among healthy subjects in Italy? J Infect Dis. 1996 Sep;174(3):668–670. doi: 10.1093/infdis/174.3.668. [DOI] [PubMed] [Google Scholar]
  41. Corey L. The current trend in genital herpes. Progress in prevention. Sex Transm Dis. 1994 Mar-Apr;21(2 Suppl):S38–S44. [PubMed] [Google Scholar]
  42. Corey L., Wald A., Davis L. G. Subclinical shedding of HSV: its potential for reduction by antiviral therapy. Adv Exp Med Biol. 1996;394:11–16. doi: 10.1007/978-1-4757-9209-6_2. [DOI] [PubMed] [Google Scholar]
  43. Croen K. D., Ostrove J. M., Dragovic L. J., Smialek J. E., Straus S. E. Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene "anti-sense" transcript by in situ hybridization. N Engl J Med. 1987 Dec 3;317(23):1427–1432. doi: 10.1056/NEJM198712033172302. [DOI] [PubMed] [Google Scholar]
  44. Croen K. D., Ostrove J. M., Dragovic L. J., Straus S. E. Patterns of gene expression and sites of latency in human nerve ganglia are different for varicella-zoster and herpes simplex viruses. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9773–9777. doi: 10.1073/pnas.85.24.9773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Croen K. D., Ostrove J. M., Dragovic L., Straus S. E. Characterization of herpes simplex virus type 2 latency-associated transcription in human sacral ganglia and in cell culture. J Infect Dis. 1991 Jan;163(1):23–28. doi: 10.1093/infdis/163.1.23. [DOI] [PubMed] [Google Scholar]
  46. Davison A. J., Scott J. E. The complete DNA sequence of varicella-zoster virus. J Gen Virol. 1986 Sep;67(Pt 9):1759–1816. doi: 10.1099/0022-1317-67-9-1759. [DOI] [PubMed] [Google Scholar]
  47. Davison A. J. Varicella-zoster virus. The Fourteenth Fleming lecture. J Gen Virol. 1991 Mar;72(Pt 3):475–486. doi: 10.1099/0022-1317-72-3-475. [DOI] [PubMed] [Google Scholar]
  48. Deatly A. M., Spivack J. G., Lavi E., Fraser N. W. RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice. Proc Natl Acad Sci U S A. 1987 May;84(10):3204–3208. doi: 10.1073/pnas.84.10.3204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Deatly A. M., Spivack J. G., Lavi E., O'Boyle D. R., 2nd, Fraser N. W. Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome. J Virol. 1988 Mar;62(3):749–756. doi: 10.1128/jvi.62.3.749-756.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Deshmane S. L., Fraser N. W. During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J Virol. 1989 Feb;63(2):943–947. doi: 10.1128/jvi.63.2.943-947.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Deshmane S. L., Nicosia M., Valyi-Nagy T., Feldman L. T., Dillner A., Fraser N. W. An HSV-1 mutant lacking the LAT TATA element reactivates normally in explant cocultivation. Virology. 1993 Oct;196(2):868–872. doi: 10.1006/viro.1993.1548. [DOI] [PubMed] [Google Scholar]
  52. Devi-Rao G. B., Bloom D. C., Stevens J. G., Wagner E. K. Herpes simplex virus type 1 DNA replication and gene expression during explant-induced reactivation of latently infected murine sensory ganglia. J Virol. 1994 Mar;68(3):1271–1282. doi: 10.1128/jvi.68.3.1271-1282.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Devi-Rao G. B., Goodart S. A., Hecht L. M., Rochford R., Rice M. K., Wagner E. K. Relationship between polyadenylated and nonpolyadenylated herpes simplex virus type 1 latency-associated transcripts. J Virol. 1991 May;65(5):2179–2190. doi: 10.1128/jvi.65.5.2179-2190.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Dobson A. T., Margolis T. P., Sedarati F., Stevens J. G., Feldman L. T. A latent, nonpathogenic HSV-1-derived vector stably expresses beta-galactosidase in mouse neurons. Neuron. 1990 Sep;5(3):353–360. doi: 10.1016/0896-6273(90)90171-b. [DOI] [PubMed] [Google Scholar]
  55. Dobson A. T., Sederati F., Devi-Rao G., Flanagan W. M., Farrell M. J., Stevens J. G., Wagner E. K., Feldman L. T. Identification of the latency-associated transcript promoter by expression of rabbit beta-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. J Virol. 1989 Sep;63(9):3844–3851. doi: 10.1128/jvi.63.9.3844-3851.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Doerig C., Pizer L. I., Wilcox C. L. An antigen encoded by the latency-associated transcript in neuronal cell cultures latently infected with herpes simplex virus type 1. J Virol. 1991 May;65(5):2724–2727. doi: 10.1128/jvi.65.5.2724-2727.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Doerig C., Pizer L. I., Wilcox C. L. Detection of the latency-associated transcript in neuronal cultures during the latent infection with herpes simplex virus type 1. Virology. 1991 Jul;183(1):423–426. doi: 10.1016/0042-6822(91)90159-9. [DOI] [PubMed] [Google Scholar]
  58. Dressler G. R., Rock D. L., Fraser N. W. Latent herpes simplex virus type 1 DNA is not extensively methylated in vivo. J Gen Virol. 1987 Jun;68(Pt 6):1761–1765. doi: 10.1099/0022-1317-68-6-1761. [DOI] [PubMed] [Google Scholar]
  59. Drummond C. W., Eglin R. P., Esiri M. M. Herpes simplex virus encephalitis in a mouse model: PCR evidence for CNS latency following acute infection. J Neurol Sci. 1994 Dec 20;127(2):159–163. doi: 10.1016/0022-510x(94)90068-x. [DOI] [PubMed] [Google Scholar]
  60. Dubin G., Fishman N. O., Eisenberg R. J., Cohen G. H., Friedman H. M. The role of herpes simplex virus glycoproteins in immune evasion. Curr Top Microbiol Immunol. 1992;179:111–120. doi: 10.1007/978-3-642-77247-4_7. [DOI] [PubMed] [Google Scholar]
  61. Dueland A. N., Ranneberg-Nilsen T., Degré M. Detection of latent varicella zoster virus DNA and human gene sequences in human trigeminal ganglia by in situ amplification combined with in situ hybridization. Arch Virol. 1995;140(11):2055–2066. doi: 10.1007/BF01322692. [DOI] [PubMed] [Google Scholar]
  62. Ecob-Prince M. S., Hassan K., Denheen M. T., Preston C. M. Expression of beta-galactosidase in neurons of dorsal root ganglia which are latently infected with herpes simplex virus type 1. J Gen Virol. 1995 Jun;76(Pt 6):1527–1532. doi: 10.1099/0022-1317-76-6-1527. [DOI] [PubMed] [Google Scholar]
  63. Ecob-Prince M. S., Rixon F. J., Preston C. M., Hassan K., Kennedy P. G. Reactivation in vivo and in vitro of herpes simplex virus from mouse dorsal root ganglia which contain different levels of latency-associated transcripts. J Gen Virol. 1993 Jun;74(Pt 6):995–1002. doi: 10.1099/0022-1317-74-6-995. [DOI] [PubMed] [Google Scholar]
  64. Efstathiou S., Minson A. C., Field H. J., Anderson J. R., Wildy P. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans. J Virol. 1986 Feb;57(2):446–455. doi: 10.1128/jvi.57.2.446-455.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Everett R. D. Construction and characterization of herpes simplex virus type 1 mutants with defined lesions in immediate early gene 1. J Gen Virol. 1989 May;70(Pt 5):1185–1202. doi: 10.1099/0022-1317-70-5-1185. [DOI] [PubMed] [Google Scholar]
  66. Fareed M. U., Spivack J. G. Two open reading frames (ORF1 and ORF2) within the 2.0-kilobase latency-associated transcript of herpes simplex virus type 1 are not essential for reactivation from latency. J Virol. 1994 Dec;68(12):8071–8081. doi: 10.1128/jvi.68.12.8071-8081.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Farrell M. J., Dobson A. T., Feldman L. T. Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):790–794. doi: 10.1073/pnas.88.3.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Farrell M. J., Hill J. M., Margolis T. P., Stevens J. G., Wagner E. K., Feldman L. T. The herpes simplex virus type 1 reactivation function lies outside the latency-associated transcript open reading frame ORF-2. J Virol. 1993 Jun;67(6):3653–3655. doi: 10.1128/jvi.67.6.3653-3655.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Farrell P. J. Epstein-Barr virus immortalizing genes. Trends Microbiol. 1995 Mar;3(3):105–109. doi: 10.1016/s0966-842x(00)88891-5. [DOI] [PubMed] [Google Scholar]
  70. Fawl R. L., Roizman B. Induction of reactivation of herpes simplex virus in murine sensory ganglia in vivo by cadmium. J Virol. 1993 Dec;67(12):7025–7031. doi: 10.1128/jvi.67.12.7025-7031.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Feduchi E., Carrasco L. Mechanism of inhibition of HSV-1 replication by tumor necrosis factor and interferon gamma. Virology. 1991 Feb;180(2):822–825. doi: 10.1016/0042-6822(91)90100-p. [DOI] [PubMed] [Google Scholar]
  72. Felser J. M., Straus S. E., Ostrove J. M. Varicella-zoster virus complements herpes simplex virus type 1 temperature-sensitive mutants. J Virol. 1987 Jan;61(1):225–228. doi: 10.1128/jvi.61.1.225-228.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Field H. J., Wildy P. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. J Hyg (Lond) 1978 Oct;81(2):267–277. doi: 10.1017/s0022172400025109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Fowler S. L., Harrison C. J., Myers M. G., Stanberry L. R. Outcome of herpes simplex virus type 2 infection in guinea pigs. J Med Virol. 1992 Apr;36(4):303–308. doi: 10.1002/jmv.1890360413. [DOI] [PubMed] [Google Scholar]
  75. Frazier D. P., Cox D., Godshalk E. M., Schaffer P. A. Identification of cis-acting sequences in the promoter of the herpes simplex virus type 1 latency-associated transcripts required for activation by nerve growth factor and sodium butyrate in PC12 cells. J Virol. 1996 Nov;70(11):7433–7444. doi: 10.1128/jvi.70.11.7433-7444.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Frazier D. P., Cox D., Godshalk E. M., Schaffer P. A. The herpes simplex virus type 1 latency-associated transcript promoter is activated through Ras and Raf by nerve growth factor and sodium butyrate in PC12 cells. J Virol. 1996 Nov;70(11):7424–7432. doi: 10.1128/jvi.70.11.7424-7432.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Frenkel N., Wyatt L. S. HHV-6 and HHV-7 as exogenous agents in human lymphocytes. Dev Biol Stand. 1992;76:259–265. [PubMed] [Google Scholar]
  78. Friedman H. M., Wang L., Fishman N. O., Lambris J. D., Eisenberg R. J., Cohen G. H., Lubinski J. Immune evasion properties of herpes simplex virus type 1 glycoprotein gC. J Virol. 1996 Jul;70(7):4253–4260. doi: 10.1128/jvi.70.7.4253-4260.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Gelven P. L., Gruber K. K., Swiger F. K., Cina S. J., Harley R. A. Fatal disseminated herpes simplex in pregnancy with maternal and neonatal death. South Med J. 1996 Jul;89(7):732–734. doi: 10.1097/00007611-199607000-00018. [DOI] [PubMed] [Google Scholar]
  80. Gerdes J. C., Smith D. S. Recurrence phenotypes and establishment of latency following rabbit keratitis produced by multiple herpes simplex virus strains. J Gen Virol. 1983 Nov;64(Pt 11):2441–2454. doi: 10.1099/0022-1317-64-11-2441. [DOI] [PubMed] [Google Scholar]
  81. Gesser R. M., Koo S. C. Oral inoculation with herpes simplex virus type 1 infects enteric neuron and mucosal nerve fibers within the gastrointestinal tract in mice. J Virol. 1996 Jun;70(6):4097–4102. doi: 10.1128/jvi.70.6.4097-4102.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Gesser R. M., Valyi-Nagy T., Altschuler S. M., Fraser N. W. Oral-oesophageal inoculation of mice with herpes simplex virus type 1 causes latent infection of the vagal sensory ganglia (nodose ganglia). J Gen Virol. 1994 Sep;75(Pt 9):2379–2386. doi: 10.1099/0022-1317-75-9-2379. [DOI] [PubMed] [Google Scholar]
  83. Gesser R. M., Valyi-Nagy T., Fraser N. W. Restricted herpes simplex virus type 1 gene expression within sensory neurons in the absence of functional B and T lymphocytes. Virology. 1994 May 1;200(2):791–795. doi: 10.1006/viro.1994.1243. [DOI] [PubMed] [Google Scholar]
  84. Gilden D. H., Mahalingam R., Dueland A. N., Cohrs R. Herpes zoster: pathogenesis and latency. Prog Med Virol. 1992;39:19–75. [PubMed] [Google Scholar]
  85. Gilden D. H., Rozenman Y., Murray R., Devlin M., Vafai A. Detection of varicella-zoster virus nucleic acid in neurons of normal human thoracic ganglia. Ann Neurol. 1987 Sep;22(3):377–380. doi: 10.1002/ana.410220315. [DOI] [PubMed] [Google Scholar]
  86. Goins W. F., Sternberg L. R., Croen K. D., Krause P. R., Hendricks R. L., Fink D. J., Straus S. E., Levine M., Glorioso J. C. A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. J Virol. 1994 Apr;68(4):2239–2252. doi: 10.1128/jvi.68.4.2239-2252.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Gordon Y. J. Pathogenesis and latency of herpes simplex virus type 1 (HSV-1): an ophthalmologist's view of the eye as a model for the study of the virus-host relationship. Adv Exp Med Biol. 1990;278:205–209. doi: 10.1007/978-1-4684-5853-4_21. [DOI] [PubMed] [Google Scholar]
  88. Gordon Y. J., Romanowski E., Araullo-Cruz T., McKnight J. L. HSV-1 corneal latency. Invest Ophthalmol Vis Sci. 1991 Mar;32(3):663–665. [PubMed] [Google Scholar]
  89. Green M. T., Courtney R. J., Dunkel E. C. Detection of an immediate early herpes simplex virus type 1 polypeptide in trigeminal ganglia from latently infected animals. Infect Immun. 1981 Dec;34(3):987–992. doi: 10.1128/iai.34.3.987-992.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Green M. T., Dunkel E. C., Courtney R. J. Detection of herpes simplex virus induced polypeptides in rabbit trigeminal ganglia. Invest Ophthalmol Vis Sci. 1984 Dec;25(12):1436–1440. [PubMed] [Google Scholar]
  91. Gressens P., Martin J. R. In situ polymerase chain reaction: localization of HSV-2 DNA sequences in infections of the nervous system. J Virol Methods. 1994 Jan;46(1):61–83. doi: 10.1016/0166-0934(94)90017-5. [DOI] [PubMed] [Google Scholar]
  92. Halford W. P., Gebhardt B. M., Carr D. J. Persistent cytokine expression in trigeminal ganglion latently infected with herpes simplex virus type 1. J Immunol. 1996 Oct 15;157(8):3542–3549. [PubMed] [Google Scholar]
  93. Harris R. A., Everett R. D., Zhu X. X., Silverstein S., Preston C. M. Herpes simplex virus type 1 immediate-early protein Vmw110 reactivates latent herpes simplex virus type 2 in an in vitro latency system. J Virol. 1989 Aug;63(8):3513–3515. doi: 10.1128/jvi.63.8.3513-3515.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Harris R. A., Preston C. M. Establishment of latency in vitro by the herpes simplex virus type 1 mutant in1814. J Gen Virol. 1991 Apr;72(Pt 4):907–913. doi: 10.1099/0022-1317-72-4-907. [DOI] [PubMed] [Google Scholar]
  95. Henderson E. E. Physicochemical-viral synergism during Epstein-Barr virus infection: a review. J Natl Cancer Inst. 1988 Jun 1;80(7):476–483. doi: 10.1093/jnci/80.7.476. [DOI] [PubMed] [Google Scholar]
  96. Hendricks R. L., Tumpey T. M. Contribution of virus and immune factors to herpes simplex virus type I-induced corneal pathology. Invest Ophthalmol Vis Sci. 1990 Oct;31(10):1929–1939. [PubMed] [Google Scholar]
  97. Hill A., Jugovic P., York I., Russ G., Bennink J., Yewdell J., Ploegh H., Johnson D. Herpes simplex virus turns off the TAP to evade host immunity. Nature. 1995 Jun 1;375(6530):411–415. doi: 10.1038/375411a0. [DOI] [PubMed] [Google Scholar]
  98. Hill J. M., Dudley J. B., Shimomura Y., Kaufman H. E. Quantitation and kinetics of induced HSV-1 ocular shedding. Curr Eye Res. 1986 Mar;5(3):241–246. doi: 10.3109/02713688609020049. [DOI] [PubMed] [Google Scholar]
  99. Hill J. M., Gebhardt B. M., Wen R., Bouterie A. M., Thompson H. W., O'Callaghan R. J., Halford W. P., Kaufman H. E. Quantitation of herpes simplex virus type 1 DNA and latency-associated transcripts in rabbit trigeminal ganglia demonstrates a stable reservoir of viral nucleic acids during latency. J Virol. 1996 May;70(5):3137–3141. doi: 10.1128/jvi.70.5.3137-3141.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Hill J. M., Haruta Y., Rootman D. S. Adrenergically induced recurrent HSV-1 corneal epithelial lesions. Curr Eye Res. 1987 Aug;6(8):1065–1071. doi: 10.3109/02713688709034878. [DOI] [PubMed] [Google Scholar]
  101. Hill J. M., Maggioncalda J. B., Garza H. H., Jr, Su Y. H., Fraser N. W., Block T. M. In vivo epinephrine reactivation of ocular herpes simplex virus type 1 in the rabbit is correlated to a 370-base-pair region located between the promoter and the 5' end of the 2.0 kilobase latency-associated transcript. J Virol. 1996 Oct;70(10):7270–7274. doi: 10.1128/jvi.70.10.7270-7274.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Hill J. M., Rayfield M. A., Haruta Y. Strain specificity of spontaneous and adrenergically induced HSV-1 ocular reactivation in latently infected rabbits. Curr Eye Res. 1987 Jan;6(1):91–97. doi: 10.3109/02713688709020074. [DOI] [PubMed] [Google Scholar]
  103. Hill J. M., Sedarati F., Javier R. T., Wagner E. K., Stevens J. G. Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology. 1990 Jan;174(1):117–125. doi: 10.1016/0042-6822(90)90060-5. [DOI] [PubMed] [Google Scholar]
  104. Hill T. J., Harbour D. A., Blyth W. A. Isolation of herpes simplex virus from the skin of clinically normal mice during latent infection. J Gen Virol. 1980 Mar;47(1):205–207. doi: 10.1099/0022-1317-47-1-205. [DOI] [PubMed] [Google Scholar]
  105. Ho D. Y., Mocarski E. S. Herpes simplex virus latent RNA (LAT) is not required for latent infection in the mouse. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7596–7600. doi: 10.1073/pnas.86.19.7596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Hossain A., Schang L. M., Jones C. Identification of gene products encoded by the latency-related gene of bovine herpesvirus 1. J Virol. 1995 Sep;69(9):5345–5352. doi: 10.1128/jvi.69.9.5345-5352.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Howard M. K., Mailhos C., Dent C. L., Latchman D. S. Transactivation by the herpes simplex virus virion protein Vmw65 and viral permissivity in a neuronal cell line with reduced levels of the cellular transcription factor Oct-1. Exp Cell Res. 1993 Jul;207(1):194–196. doi: 10.1006/excr.1993.1180. [DOI] [PubMed] [Google Scholar]
  108. Hufert F. T., Diebold T., Ermisch B., Von Laer D., Meyer-König U., Neumann-Haefelin D. Liver failure due to disseminated HSV-1 infection in a newborn twin. Scand J Infect Dis. 1995;27(6):627–629. doi: 10.3109/00365549509047079. [DOI] [PubMed] [Google Scholar]
  109. Izumi K. M., McKelvey A. M., Devi-Rao G., Wagner E. K., Stevens J. G. Molecular and biological characterization of a type 1 herpes simplex virus (HSV-1) specifically deleted for expression of the latency-associated transcript (LAT). Microb Pathog. 1989 Aug;7(2):121–134. doi: 10.1016/0882-4010(89)90031-4. [DOI] [PubMed] [Google Scholar]
  110. Izumi K. M., Stevens J. G. Molecular and biological characterization of a herpes simplex virus type 1 (HSV-1) neuroinvasiveness gene. J Exp Med. 1990 Aug 1;172(2):487–496. doi: 10.1084/jem.172.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Jacobson J. G., Leib D. A., Goldstein D. J., Bogard C. L., Schaffer P. A., Weller S. K., Coen D. M. A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology. 1989 Nov;173(1):276–283. doi: 10.1016/0042-6822(89)90244-4. [DOI] [PubMed] [Google Scholar]
  112. Jamieson D. R., Robinson L. H., Daksis J. I., Nicholl M. J., Preston C. M. Quiescent viral genomes in human fibroblasts after infection with herpes simplex virus type 1 Vmw65 mutants. J Gen Virol. 1995 Jun;76(Pt 6):1417–1431. doi: 10.1099/0022-1317-76-6-1417. [DOI] [PubMed] [Google Scholar]
  113. Jamieson G. A., Maitland N. J., Wilcock G. K., Yates C. M., Itzhaki R. F. Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J Pathol. 1992 Aug;167(4):365–368. doi: 10.1002/path.1711670403. [DOI] [PubMed] [Google Scholar]
  114. Javier R. T., Izumi K. M., Stevens J. G. Localization of a herpes simplex virus neurovirulence gene dissociated from high-titer virus replication in the brain. J Virol. 1988 Apr;62(4):1381–1387. doi: 10.1128/jvi.62.4.1381-1387.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Javier R. T., Stevens J. G., Dissette V. B., Wagner E. K. A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology. 1988 Sep;166(1):254–257. doi: 10.1016/0042-6822(88)90169-9. [DOI] [PubMed] [Google Scholar]
  116. Kanangat S., Thomas J., Gangappa S., Babu J. S., Rouse B. T. Herpes simplex virus type 1-mediated up-regulation of IL-12 (p40) mRNA expression. Implications in immunopathogenesis and protection. J Immunol. 1996 Feb 1;156(3):1110–1116. [PubMed] [Google Scholar]
  117. Kapoor A. K., Nash A. A., Wildy P. Pathogenesis of herpes simplex virus in B cell-suppressed mice: the relative roles of cell-mediated and humoral immunity. J Gen Virol. 1982 Jul;61(Pt 50):127–131. doi: 10.1099/0022-1317-61-1-127. [DOI] [PubMed] [Google Scholar]
  118. Katz J. P., Bodin E. T., Coen D. M. Quantitative polymerase chain reaction analysis of herpes simplex virus DNA in ganglia of mice infected with replication-incompetent mutants. J Virol. 1990 Sep;64(9):4288–4295. doi: 10.1128/jvi.64.9.4288-4295.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Kaye S. B., Lynas C., Patterson A., Risk J. M., McCarthy K., Hart C. A. Evidence for herpes simplex viral latency in the human cornea. Br J Ophthalmol. 1991 Apr;75(4):195–200. doi: 10.1136/bjo.75.4.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Kennedy P. G., Al-Saadi S. A., Clements G. B. Reactivation of latent herpes simplex virus from dissociated identified dorsal root ganglion cells in culture. J Gen Virol. 1983 Jul;64(Pt 7):1629–1635. doi: 10.1099/0022-1317-64-7-1629. [DOI] [PubMed] [Google Scholar]
  121. Kenny J. J., Krebs F. C., Hartle H. T., Gartner A. E., Chatton B., Leiden J. M., Hoeffler J. P., Weber P. C., Wigdahl B. Identification of a second ATF/CREB-like element in the herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) promoter. Virology. 1994 Apr;200(1):220–235. doi: 10.1006/viro.1994.1180. [DOI] [PubMed] [Google Scholar]
  122. Knipe D. M., Senechek D., Rice S. A., Smith J. L. Stages in the nuclear association of the herpes simplex virus transcriptional activator protein ICP4. J Virol. 1987 Feb;61(2):276–284. doi: 10.1128/jvi.61.2.276-284.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Knotts F. B., Cook M. L., Stevens J. G. Latent herpes simplex virus in the central nervous system of rabbits and mice. J Exp Med. 1973 Sep 1;138(3):740–744. doi: 10.1084/jem.138.3.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Koffa M., Koumantakis E., Ergazaki M., Tsatsanis C., Spandidos D. A. Association of herpesvirus infection with the development of genital cancer. Int J Cancer. 1995 Sep 27;63(1):58–62. doi: 10.1002/ijc.2910630112. [DOI] [PubMed] [Google Scholar]
  125. Kramer M. F., Coen D. M. Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J Virol. 1995 Mar;69(3):1389–1399. doi: 10.1128/jvi.69.3.1389-1399.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Krause P. R., Croen K. D., Straus S. E., Ostrove J. M. Detection and preliminary characterization of herpes simplex virus type 1 transcripts in latently infected human trigeminal ganglia. J Virol. 1988 Dec;62(12):4819–4823. doi: 10.1128/jvi.62.12.4819-4823.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Krause P. R., Ostrove J. M., Straus S. E. The nucleotide sequence, 5' end, promoter domain, and kinetics of expression of the gene encoding the herpes simplex virus type 2 latency-associated transcript. J Virol. 1991 Oct;65(10):5619–5623. doi: 10.1128/jvi.65.10.5619-5623.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Krause P. R., Stanberry L. R., Bourne N., Connelly B., Kurawadwala J. F., Patel A., Straus S. E. Expression of the herpes simplex virus type 2 latency-associated transcript enhances spontaneous reactivation of genital herpes in latently infected guinea pigs. J Exp Med. 1995 Jan 1;181(1):297–306. doi: 10.1084/jem.181.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Kristensson K., Lycke E., Sjöstrand J. Spread of herpes simplex virus in peripheral nerves. Acta Neuropathol. 1971;17(1):44–53. doi: 10.1007/BF00684740. [DOI] [PubMed] [Google Scholar]
  130. Kulkarni A. G., Brid N. S. Images in clinical medicine. Herpes zoster. N Engl J Med. 1995 Jun 22;332(25):1684–1684. doi: 10.1056/NEJM199506223322505. [DOI] [PubMed] [Google Scholar]
  131. Kumano Y., Yamamoto M., Mori R. Protection against herpes simplex virus infection in mice by recombinant murine interferon-beta in combination with antibody. Antiviral Res. 1987 Jun;7(5):289–301. doi: 10.1016/0166-3542(87)90012-x. [DOI] [PubMed] [Google Scholar]
  132. Kwon B. S., Gangarosa L. P., Burch K. D., deBack J., Hill J. M. Induction of ocular herpes simplex virus shedding by iontophoresis of epinephrine into rabbit cornea. Invest Ophthalmol Vis Sci. 1981 Sep;21(3):442–449. [PubMed] [Google Scholar]
  133. Kwon B. S., Gangarosa L. P., Sr, Green K., Hill J. M. Kinetics of ocular herpes simplex virus shedding induced by epinephrine iontophoresis. Invest Ophthalmol Vis Sci. 1982 Jun;22(6):818–821. [PubMed] [Google Scholar]
  134. Lagunoff M., Randall G., Roizman B. Phenotypic properties of herpes simplex virus 1 containing a derepressed open reading frame P gene. J Virol. 1996 Mar;70(3):1810–1817. doi: 10.1128/jvi.70.3.1810-1817.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Lagunoff M., Roizman B. Expression of a herpes simplex virus 1 open reading frame antisense to the gamma(1)34.5 gene and transcribed by an RNA 3' coterminal with the unspliced latency-associated transcript. J Virol. 1994 Sep;68(9):6021–6028. doi: 10.1128/jvi.68.9.6021-6028.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Lancz G. J., Zettlemoyer T. L. Restricted replication of herpes simplex virus in neural cells. Proc Soc Exp Biol Med. 1976 Jul;152(3):302–306. doi: 10.3181/00379727-152-39384. [DOI] [PubMed] [Google Scholar]
  137. Landry M. L., Bull C. Herpes simplex types 1 and 2: latency in the genital tract of guinea pigs. Intervirology. 1992;33(4):204–210. doi: 10.1159/000150252. [DOI] [PubMed] [Google Scholar]
  138. Laycock K. A., Lee S. F., Brady R. H., Pepose J. S. Characterization of a murine model of recurrent herpes simplex viral keratitis induced by ultraviolet B radiation. Invest Ophthalmol Vis Sci. 1991 Sep;32(10):2741–2746. [PubMed] [Google Scholar]
  139. Leib D. A., Bogard C. L., Kosz-Vnenchak M., Hicks K. A., Coen D. M., Knipe D. M., Schaffer P. A. A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol. 1989 Jul;63(7):2893–2900. doi: 10.1128/jvi.63.7.2893-2900.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Leib D. A., Coen D. M., Bogard C. L., Hicks K. A., Yager D. R., Knipe D. M., Tyler K. L., Schaffer P. A. Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J Virol. 1989 Feb;63(2):759–768. doi: 10.1128/jvi.63.2.759-768.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Leib D. A., Nadeau K. C., Rundle S. A., Schaffer P. A. The promoter of the latency-associated transcripts of herpes simplex virus type 1 contains a functional cAMP-response element: role of the latency-associated transcripts and cAMP in reactivation of viral latency. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):48–52. doi: 10.1073/pnas.88.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Levy J. A. A new human herpesvirus: KSHV or HHV8? Lancet. 1995 Sep 23;346(8978):786–786. doi: 10.1016/s0140-6736(95)91611-3. [DOI] [PubMed] [Google Scholar]
  143. Lillycrop K. A., Dent C. L., Wheatley S. C., Beech M. N., Ninkina N. N., Wood J. N., Latchman D. S. The octamer-binding protein Oct-2 represses HSV immediate-early genes in cell lines derived from latently infectable sensory neurons. Neuron. 1991 Sep;7(3):381–390. doi: 10.1016/0896-6273(91)90290-g. [DOI] [PubMed] [Google Scholar]
  144. Lillycrop K. A., Howard M. K., Estridge J. K., Latchman D. S. Inhibition of herpes simplex virus infection by ectopic expression of neuronal splice variants of the Oct-2 transcription factor. Nucleic Acids Res. 1994 Mar 11;22(5):815–820. doi: 10.1093/nar/22.5.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Lokensgard J. R., Bloom D. C., Dobson A. T., Feldman L. T. Long-term promoter activity during herpes simplex virus latency. J Virol. 1994 Nov;68(11):7148–7158. doi: 10.1128/jvi.68.11.7148-7158.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Lokensgard J. R., Thawley D. G., Molitor T. W. Pseudorabies virus latency: restricted transcription. Arch Virol. 1990;110(1-2):129–136. doi: 10.1007/BF01310709. [DOI] [PubMed] [Google Scholar]
  147. Lycke E., Johansson M., Svennerholm B., Lindahl U. Binding of herpes simplex virus to cellular heparan sulphate, an initial step in the adsorption process. J Gen Virol. 1991 May;72(Pt 5):1131–1137. doi: 10.1099/0022-1317-72-5-1131. [DOI] [PubMed] [Google Scholar]
  148. Lynas C., Hill T. J., Maitland N. J., Love S. Latent infection with the MS strain of herpes simplex virus type 2 in the mouse following intracerebral inoculation. J Neurol Sci. 1993 Dec 1;120(1):107–114. doi: 10.1016/0022-510x(93)90033-u. [DOI] [PubMed] [Google Scholar]
  149. Mador N., Panet A., Latchman D., Steiner I. Expression and splicing of the latency-associated transcripts of herpes simplex virus type 1 in neuronal and non-neuronal cell lines. J Biochem. 1995 Jun;117(6):1288–1297. doi: 10.1093/oxfordjournals.jbchem.a124857. [DOI] [PubMed] [Google Scholar]
  150. Maggioncalda J., Mehta A., Fraser N. W., Block T. M. Analysis of a herpes simplex virus type 1 LAT mutant with a deletion between the putative promoter and the 5' end of the 2.0-kilobase transcript. J Virol. 1994 Dec;68(12):7816–7824. doi: 10.1128/jvi.68.12.7816-7824.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Maggioncalda J., Mehta A., Su Y. H., Fraser N. W., Block T. M. Correlation between herpes simplex virus type 1 rate of reactivation from latent infection and the number of infected neurons in trigeminal ganglia. Virology. 1996 Nov 1;225(1):72–81. doi: 10.1006/viro.1996.0576. [DOI] [PubMed] [Google Scholar]
  152. Mahalingam R., Wellish M. C., Dueland A. N., Cohrs R. J., Gilden D. H. Localization of herpes simplex virus and varicella zoster virus DNA in human ganglia. Ann Neurol. 1992 Apr;31(4):444–448. doi: 10.1002/ana.410310417. [DOI] [PubMed] [Google Scholar]
  153. Margolis T. P., Bloom D. C., Dobson A. T., Feldman L. T., Stevens J. G. Decreased reporter gene expression during latent infection with HSV LAT promoter constructs. Virology. 1993 Dec;197(2):585–592. doi: 10.1006/viro.1993.1632. [DOI] [PubMed] [Google Scholar]
  154. Margolis T. P., Dawson C. R., LaVail J. H. Herpes simplex viral infection of the mouse trigeminal ganglion. Immunohistochemical analysis of cell populations. Invest Ophthalmol Vis Sci. 1992 Feb;33(2):259–267. [PubMed] [Google Scholar]
  155. Margolis T. P., Sedarati F., Dobson A. T., Feldman L. T., Stevens J. G. Pathways of viral gene expression during acute neuronal infection with HSV-1. Virology. 1992 Jul;189(1):150–160. doi: 10.1016/0042-6822(92)90690-q. [DOI] [PubMed] [Google Scholar]
  156. McGeoch D. J., Cook S., Dolan A., Jamieson F. E., Telford E. A. Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J Mol Biol. 1995 Mar 31;247(3):443–458. doi: 10.1006/jmbi.1995.0152. [DOI] [PubMed] [Google Scholar]
  157. McGeoch D. J., Cook S. Molecular phylogeny of the alphaherpesvirinae subfamily and a proposed evolutionary timescale. J Mol Biol. 1994 Apr 22;238(1):9–22. doi: 10.1006/jmbi.1994.1264. [DOI] [PubMed] [Google Scholar]
  158. McGeoch D. J. The genomes of the human herpesviruses: contents, relationships, and evolution. Annu Rev Microbiol. 1989;43:235–265. doi: 10.1146/annurev.mi.43.100189.001315. [DOI] [PubMed] [Google Scholar]
  159. McGrath B. J., Newman C. L. Genital herpes simplex infections in patients with the acquired immunodeficiency syndrome. Pharmacotherapy. 1994 Sep-Oct;14(5):529–542. [PubMed] [Google Scholar]
  160. McLennan J. L., Darby G. Herpes simplex virus latency: the cellular location of virus in dorsal root ganglia and the fate of the infected cell following virus activation. J Gen Virol. 1980 Dec;51(Pt 2):233–243. doi: 10.1099/0022-1317-51-2-233. [DOI] [PubMed] [Google Scholar]
  161. Mehta A., Maggioncalda J., Bagasra O., Thikkavarapu S., Saikumari P., Valyi-Nagy T., Fraser N. W., Block T. M. In situ DNA PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal ganglia of latently infected mice. Virology. 1995 Jan 10;206(1):633–640. doi: 10.1016/s0042-6822(95)80080-8. [DOI] [PubMed] [Google Scholar]
  162. Mellerick D. M., Fraser N. W. Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology. 1987 Jun;158(2):265–275. doi: 10.1016/0042-6822(87)90198-x. [DOI] [PubMed] [Google Scholar]
  163. Miller R. F., Fox J. D., Thomas P., Waite J. C., Sharvell Y., Gazzard B. G., Harrison M. J., Brink N. S. Acute lumbosacral polyradiculopathy due to cytomegalovirus in advanced HIV disease: CSF findings in 17 patients. J Neurol Neurosurg Psychiatry. 1996 Nov;61(5):456–460. doi: 10.1136/jnnp.61.5.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Mitchell B. M., Stevens J. G. Neuroinvasive properties of herpes simplex virus type 1 glycoprotein variants are controlled by the immune response. J Immunol. 1996 Jan 1;156(1):246–255. [PubMed] [Google Scholar]
  165. Mitchell W. J., Deshmane S. L., Dolan A., McGeoch D. J., Fraser N. W. Characterization of herpes simplex virus type 2 transcription during latent infection of mouse trigeminal ganglia. J Virol. 1990 Nov;64(11):5342–5348. doi: 10.1128/jvi.64.11.5342-5348.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Mitchell W. J., Lirette R. P., Fraser N. W. Mapping of low abundance latency-associated RNA in the trigeminal ganglia of mice latently infected with herpes simplex virus type 1. J Gen Virol. 1990 Jan;71(Pt 1):125–132. doi: 10.1099/0022-1317-71-1-125. [DOI] [PubMed] [Google Scholar]
  167. Mitchell W. J., Steiner I., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. A herpes simplex virus type 1 variant, deleted in the promoter region of the latency-associated transcripts, does not produce any detectable minor RNA species during latency in the mouse trigeminal ganglion. J Gen Virol. 1990 Apr;71(Pt 4):953–957. doi: 10.1099/0022-1317-71-4-953. [DOI] [PubMed] [Google Scholar]
  168. Moriya A., Yoshiki A., Kita M., Fushiki S., Imanishi J. Heat shock-induced reactivation of herpes simplex virus type 1 in latently infected mouse trigeminal ganglion cells in dissociated culture. Arch Virol. 1994;135(3-4):419–425. doi: 10.1007/BF01310025. [DOI] [PubMed] [Google Scholar]
  169. Morris D. J., Cleator G. M., Klapper P. E., Cooper R. J., Biney E. O., Dennett C., Marcyniuk B., Tullo A. B. Detection of herpes simplex virus DNA in donor cornea culture medium by polymerase chain reaction. Br J Ophthalmol. 1996 Jul;80(7):654–657. doi: 10.1136/bjo.80.7.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Mullen M. A., Gerstberger S., Ciufo D. M., Mosca J. D., Hayward G. S. Evaluation of colocalization interactions between the IE110, IE175, and IE63 transactivator proteins of herpes simplex virus within subcellular punctate structures. J Virol. 1995 Jan;69(1):476–491. doi: 10.1128/jvi.69.1.476-491.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Nahmias A. J., Josey W. E., Naib Z. M., Freeman M. G., Fernandez R. J., Wheeler J. H. Perinatal risk associated with maternal genital herpes simplex virus infection. Am J Obstet Gynecol. 1971 Jul 15;110(6):825–837. doi: 10.1016/0002-9378(71)90580-1. [DOI] [PubMed] [Google Scholar]
  172. Nash A. A., Gell P. G. Membrane phenotype of murine effector and suppressor T cells involved in delayed hypersensitivity and protective immunity to herpes simplex virus. Cell Immunol. 1983 Feb 1;75(2):348–355. doi: 10.1016/0008-8749(83)90332-5. [DOI] [PubMed] [Google Scholar]
  173. Nash A. A., Jayasuriya A., Phelan J., Cobbold S. P., Waldmann H., Prospero T. Different roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system. J Gen Virol. 1987 Mar;68(Pt 3):825–833. doi: 10.1099/0022-1317-68-3-825. [DOI] [PubMed] [Google Scholar]
  174. Natarajan R., Deshmane S., Valyi-Nagy T., Everett R., Fraser N. W. A herpes simplex virus type 1 mutant lacking the ICP0 introns reactivates with normal efficiency. J Virol. 1991 Oct;65(10):5569–5573. doi: 10.1128/jvi.65.10.5569-5573.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Nesburn A. B., Cook M. L., Stevens J. G. Latent herpes simplex virus. Isolation from rabbit trigeminal ganglia between episodes of recurrent ocular infection. Arch Ophthalmol. 1972 Oct;88(4):412–417. doi: 10.1001/archopht.1972.01000030414012. [DOI] [PubMed] [Google Scholar]
  176. Nesburn A. B., Elliott J. H., Leibowitz H. M. Spontaneous reactivation of experimental herpes simplex keratitis in rabbits. Arch Ophthalmol. 1967 Oct;78(4):523–529. doi: 10.1001/archopht.1967.00980030525021. [DOI] [PubMed] [Google Scholar]
  177. Nicoll J. A., Love S., Kinrade E. Distribution of herpes simplex virus DNA in the brains of human long-term survivors of encephalitis. Neurosci Lett. 1993 Jul 23;157(2):215–218. doi: 10.1016/0304-3940(93)90740-c. [DOI] [PubMed] [Google Scholar]
  178. Nicosia M., Zabolotny J. M., Lirette R. P., Fraser N. W. The HSV-1 2-kb latency-associated transcript is found in the cytoplasm comigrating with ribosomal subunits during productive infection. Virology. 1994 Nov 1;204(2):717–728. doi: 10.1006/viro.1994.1587. [DOI] [PubMed] [Google Scholar]
  179. O'Neill F. J., Goldberg R. J., Rapp F. Herpes simplex virus latency in cultured human cells following treatment with cytosine arabinoside. J Gen Virol. 1972 Feb;14(2):189–197. doi: 10.1099/0022-1317-14-2-189. [DOI] [PubMed] [Google Scholar]
  180. O'Neill F. J. Prolongation of herpes simplex virus latency in cultured human cells by temperature elevation. J Virol. 1977 Oct;24(1):41–46. doi: 10.1128/jvi.24.1.41-46.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Okazaki H., Sekitani T. Experimental reactivation of HSV-I in rat vestibular ganglia. Acta Otolaryngol Suppl. 1993;503:90–92. doi: 10.3109/00016489309128082. [DOI] [PubMed] [Google Scholar]
  182. Olson L. C., Buescher E. L., Artenstein M. S., Parkman P. D. Herpesvirus infections of the human central nervous system. N Engl J Med. 1967 Dec 14;277(24):1271–1277. doi: 10.1056/NEJM196712142772401. [DOI] [PubMed] [Google Scholar]
  183. Openshaw H., McNeill J. I., Lin X. H., Niland J., Cantin E. M. Herpes simplex virus DNA in normal corneas: persistence without viral shedding from ganglia. J Med Virol. 1995 May;46(1):75–80. doi: 10.1002/jmv.1890460116. [DOI] [PubMed] [Google Scholar]
  184. Oren I., Sobel J. D. Human herpesvirus type 6: review. Clin Infect Dis. 1992 Mar;14(3):741–746. doi: 10.1093/clinids/14.3.741. [DOI] [PubMed] [Google Scholar]
  185. Ostrove J. M. Molecular biology of varicella zoster virus. Adv Virus Res. 1990;38:45–98. doi: 10.1016/s0065-3527(08)60859-3. [DOI] [PubMed] [Google Scholar]
  186. Pass R. F., Whitley R. J., Whelchel J. D., Diethelm A. G., Reynolds D. W., Alford C. A. Identification of patients with increased risk of infection with herpes simplex virus after renal transplantation. J Infect Dis. 1979 Oct;140(4):487–492. doi: 10.1093/infdis/140.4.487. [DOI] [PubMed] [Google Scholar]
  187. Pearson G. R. Epstein-Barr virus and nasopharyngeal carcinoma. J Cell Biochem Suppl. 1993;17F:150–154. doi: 10.1002/jcb.240531021. [DOI] [PubMed] [Google Scholar]
  188. Perng G. C., Chokephaibulkit K., Thompson R. L., Sawtell N. M., Slanina S. M., Ghiasi H., Nesburn A. B., Wechsler S. L. The region of the herpes simplex virus type 1 LAT gene that is colinear with the ICP34.5 gene is not involved in spontaneous reactivation. J Virol. 1996 Jan;70(1):282–291. doi: 10.1128/jvi.70.1.282-291.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Perng G. C., Dunkel E. C., Geary P. A., Slanina S. M., Ghiasi H., Kaiwar R., Nesburn A. B., Wechsler S. L. The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol. 1994 Dec;68(12):8045–8055. doi: 10.1128/jvi.68.12.8045-8055.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Perng G. C., Ghiasi H., Slanina S. M., Nesburn A. B., Wechsler S. L. High-dose ocular infection with a herpes simplex virus type 1 ICP34.5 deletion mutant produces no corneal disease or neurovirulence yet results in wild-type levels of spontaneous reactivation. J Virol. 1996 May;70(5):2883–2893. doi: 10.1128/jvi.70.5.2883-2893.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Perng G. C., Ghiasi H., Slanina S. M., Nesburn A. B., Wechsler S. L. The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3-kilobase primary transcript. J Virol. 1996 Feb;70(2):976–984. doi: 10.1128/jvi.70.2.976-984.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Perng G. C., Slanina S. M., Ghiasi H., Nesburn A. B., Wechsler S. L. A 371-nucleotide region between the herpes simplex virus type 1 (HSV-1) LAT promoter and the 2-kilobase LAT is not essential for efficient spontaneous reactivation of latent HSV-1. J Virol. 1996 Mar;70(3):2014–2018. doi: 10.1128/jvi.70.3.2014-2018.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Perry L. J., Rixon F. J., Everett R. D., Frame M. C., McGeoch D. J. Characterization of the IE110 gene of herpes simplex virus type 1. J Gen Virol. 1986 Nov;67(Pt 11):2365–2380. doi: 10.1099/0022-1317-67-11-2365. [DOI] [PubMed] [Google Scholar]
  194. Peterslund N. A. Herpesvirus infection: an overview of the clinical manifestations. Scand J Infect Dis Suppl. 1991;80:15–20. [PubMed] [Google Scholar]
  195. Peyman A., Helsberg M., Kretzschmar G., Mag M., Grabley S., Uhlmann E. Inhibition of viral growth by antisense oligonucleotides directed against the IE110 and the UL30 mRNA of herpes simplex virus type-1. Biol Chem Hoppe Seyler. 1995 Mar;376(3):195–198. doi: 10.1515/bchm3.1995.376.3.195. [DOI] [PubMed] [Google Scholar]
  196. Poffenberger K. L., Idowu A. D., Fraser-Smith E. B., Raichlen P. E., Herman R. C. A herpes simplex virus type 1 ICP22 deletion mutant is altered for virulence and latency in vivo. Arch Virol. 1994;139(1-2):111–119. doi: 10.1007/BF01309458. [DOI] [PubMed] [Google Scholar]
  197. Preston C. M., Russell J. Retention of nonlinear viral DNA during herpes simplex virus latency in vitro. Intervirology. 1991;32(2):69–75. doi: 10.1159/000150187. [DOI] [PubMed] [Google Scholar]
  198. Priola S. A., Gustafson D. P., Wagner E. K., Stevens J. G. A major portion of the latent pseudorabies virus genome is transcribed in trigeminal ganglia of pigs. J Virol. 1990 Oct;64(10):4755–4760. doi: 10.1128/jvi.64.10.4755-4760.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Priola S. A., Stevens J. G. The 5' and 3' limits of transcription in the pseudorabies virus latency associated transcription unit. Virology. 1991 Jun;182(2):852–856. doi: 10.1016/0042-6822(91)90628-o. [DOI] [PubMed] [Google Scholar]
  200. Purves F. C., Ogle W. O., Roizman B. Processing of the herpes simplex virus regulatory protein alpha 22 mediated by the UL13 protein kinase determines the accumulation of a subset of alpha and gamma mRNAs and proteins in infected cells. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6701–6705. doi: 10.1073/pnas.90.14.6701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Quinlan M. P., Knipe D. M. Nuclear localization of herpesvirus proteins: potential role for the cellular framework. Mol Cell Biol. 1983 Mar;3(3):315–324. doi: 10.1128/mcb.3.3.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Rader K. A., Ackland-Berglund C. E., Miller J. K., Pepose J. S., Leib D. A. In vivo characterization of site-directed mutations in the promoter of the herpes simplex virus type 1 latency-associated transcripts. J Gen Virol. 1993 Sep;74(Pt 9):1859–1869. doi: 10.1099/0022-1317-74-9-1859. [DOI] [PubMed] [Google Scholar]
  203. Ramakrishnan R., Fink D. J., Jiang G., Desai P., Glorioso J. C., Levine M. Competitive quantitative PCR analysis of herpes simplex virus type 1 DNA and latency-associated transcript RNA in latently infected cells of the rat brain. J Virol. 1994 Mar;68(3):1864–1873. doi: 10.1128/jvi.68.3.1864-1873.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Ramakrishnan R., Levine M., Fink D. J. PCR-based analysis of herpes simplex virus type 1 latency in the rat trigeminal ganglion established with a ribonucleotide reductase-deficient mutant. J Virol. 1994 Nov;68(11):7083–7091. doi: 10.1128/jvi.68.11.7083-7091.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Ramakrishnan R., Poliani P. L., Levine M., Glorioso J. C., Fink D. J. Detection of herpes simplex virus type 1 latency-associated transcript expression in trigeminal ganglia by in situ reverse transcriptase PCR. J Virol. 1996 Sep;70(9):6519–6523. doi: 10.1128/jvi.70.9.6519-6523.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Rand K. H., Berns K. I., Rayfield M. A. Recovery of herpes simplex type 1 from the celiac ganglion after renal transplantation. South Med J. 1984 Mar;77(3):403–404. doi: 10.1097/00007611-198403000-00039. [DOI] [PubMed] [Google Scholar]
  207. Reeves W. C., Corey L., Adams H. G., Vontver L. A., Holmes K. K. Risk of recurrence after first episodes of genital herpes. Relation to HSV type and antibody response. N Engl J Med. 1981 Aug 6;305(6):315–319. doi: 10.1056/NEJM198108063050604. [DOI] [PubMed] [Google Scholar]
  208. Rivera-Gonzalez R., Imbalzano A. N., Gu B., Deluca N. A. The role of ICP4 repressor activity in temporal expression of the IE-3 and latency-associated transcript promoters during HSV-1 infection. Virology. 1994 Aug 1;202(2):550–564. doi: 10.1006/viro.1994.1377. [DOI] [PubMed] [Google Scholar]
  209. Rock D. L., Beam S. L., Mayfield J. E. Mapping bovine herpesvirus type 1 latency-related RNA in trigeminal ganglia of latently infected rabbits. J Virol. 1987 Dec;61(12):3827–3831. doi: 10.1128/jvi.61.12.3827-3831.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Rock D. L., Fraser N. W. Detection of HSV-1 genome in central nervous system of latently infected mice. Nature. 1983 Apr 7;302(5908):523–525. doi: 10.1038/302523a0. [DOI] [PubMed] [Google Scholar]
  211. Rock D. L., Hagemoser W. A., Osorio F. A., McAllister H. A. Transcription from the pseudorabies virus genome during latent infection. Brief report. Arch Virol. 1988;98(1-2):99–106. doi: 10.1007/BF01321010. [DOI] [PubMed] [Google Scholar]
  212. Rock D. L., Hagemoser W. A., Osorio F. A., Reed D. E. Detection of bovine herpesvirus type 1 RNA in trigeminal ganglia of latently infected rabbits by in situ hybridization. J Gen Virol. 1986 Nov;67(Pt 11):2515–2520. doi: 10.1099/0022-1317-67-11-2515. [DOI] [PubMed] [Google Scholar]
  213. Rock D. L., Nesburn A. B., Ghiasi H., Ong J., Lewis T. L., Lokensgard J. R., Wechsler S. L. Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol. 1987 Dec;61(12):3820–3826. doi: 10.1128/jvi.61.12.3820-3826.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Rodda S., Jack I., White D. O. Herpes-simplex virus from trigeminal ganglion. Lancet. 1973 Jun 16;1(7816):1395–1396. doi: 10.1016/s0140-6736(73)91730-3. [DOI] [PubMed] [Google Scholar]
  215. Rootman D. S., Haruta Y., Hill J. M. Reactivation of HSV-1 in primates by transcorneal iontophoresis of adrenergic agents. Invest Ophthalmol Vis Sci. 1990 Mar 1;31(3):597–600. [PubMed] [Google Scholar]
  216. Rösen-Wolff A., Scholz J., Darai G. Organotropism of latent herpes simplex virus type 1 is correlated to the presence of a 1.5 kb RNA transcript mapped within the BamHI DNA fragment B (0.738 to 0.809 map units). Virus Res. 1989 Jan;12(1):43–51. doi: 10.1016/0168-1702(89)90052-x. [DOI] [PubMed] [Google Scholar]
  217. Rødahl E., Haarr L. Analysis of the 2-kilobase latency-associated transcript expressed in PC12 cells productively infected with herpes simplex virus type 1: evidence for a stable, nonlinear structure. J Virol. 1997 Feb;71(2):1703–1707. doi: 10.1128/jvi.71.2.1703-1707.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Sacks W. R., Schaffer P. A. Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture. J Virol. 1987 Mar;61(3):829–839. doi: 10.1128/jvi.61.3.829-839.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Salim A. S. Reducing the recurrence rate of duodenal ulceration after highly selective vagotomy: a study in the rat and in man. J Surg Res. 1993 Nov;55(5):493–498. doi: 10.1006/jsre.1993.1174. [DOI] [PubMed] [Google Scholar]
  220. Sandri-Goldin R. M., Sekulovich R. E., Leary K. The alpha protein ICP0 does not appear to play a major role in the regulation of herpes simplex virus gene expression during infection in tissue culture. Nucleic Acids Res. 1987 Feb 11;15(3):905–919. doi: 10.1093/nar/15.3.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Sawtell N. M., Thompson R. L. Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. J Virol. 1992 Apr;66(4):2157–2169. doi: 10.1128/jvi.66.4.2157-2169.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Sawtell N. M., Thompson R. L. Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. J Virol. 1992 Apr;66(4):2150–2156. doi: 10.1128/jvi.66.4.2150-2156.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Schalling M., Ekman M., Kaaya E. E., Linde A., Biberfeld P. A role for a new herpes virus (KSHV) in different forms of Kaposi's sarcoma. Nat Med. 1995 Jul;1(7):707–708. doi: 10.1038/nm0795-707. [DOI] [PubMed] [Google Scholar]
  224. Schang L. M., Hossain A., Jones C. The latency-related gene of bovine herpesvirus 1 encodes a product which inhibits cell cycle progression. J Virol. 1996 Jun;70(6):3807–3814. doi: 10.1128/jvi.70.6.3807-3814.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Scheck A. C., Wigdahl B., Rapp F. Transcriptional activity of the herpes simplex virus genome during establishment, maintenance, and reactivation of in vitro virus latency. Intervirology. 1989;30(3):121–136. doi: 10.1159/000150084. [DOI] [PubMed] [Google Scholar]
  226. Schmid D. S., Rouse B. T. The role of T cell immunity in control of herpes simplex virus. Curr Top Microbiol Immunol. 1992;179:57–74. doi: 10.1007/978-3-642-77247-4_4. [DOI] [PubMed] [Google Scholar]
  227. Schmid D. S. The human MHC-restricted cellular response to herpes simplex virus type 1 is mediated by CD4+, CD8- T cells and is restricted to the DR region of the MHC complex. J Immunol. 1988 May 15;140(10):3610–3616. [PubMed] [Google Scholar]
  228. Sedarati F., Izumi K. M., Wagner E. K., Stevens J. G. Herpes simplex virus type 1 latency-associated transcription plays no role in establishment or maintenance of a latent infection in murine sensory neurons. J Virol. 1989 Oct;63(10):4455–4458. doi: 10.1128/jvi.63.10.4455-4458.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Sedarati F., Margolis T. P., Stevens J. G. Latent infection can be established with drastically restricted transcription and replication of the HSV-1 genome. Virology. 1993 Feb;192(2):687–691. doi: 10.1006/viro.1993.1089. [DOI] [PubMed] [Google Scholar]
  230. Seid M., Leung K. N., Pye C., Phelan J., Nash A. A., Godfrey H. P. Clonal analysis of the T-cell response of mice to herpes simplex virus: correlation between lymphokine production in vitro and the induction of delayed-type hypersensitivity and antiviral activity in vivo. Viral Immunol. 1987 Spring;1(1):35–44. doi: 10.1089/vim.1987.1.35. [DOI] [PubMed] [Google Scholar]
  231. Sequiera L. W., Jennings L. C., Carrasco L. H., Lord M. A., Curry A., Sutton R. N. Detection of herpes-simplex viral genome in brain tissue. Lancet. 1979 Sep 22;2(8143):609–612. doi: 10.1016/s0140-6736(79)91667-2. [DOI] [PubMed] [Google Scholar]
  232. Shao L., Rapp L. M., Weller S. K. Herpes simplex virus 1 alkaline nuclease is required for efficient egress of capsids from the nucleus. Virology. 1993 Sep;196(1):146–162. doi: 10.1006/viro.1993.1463. [DOI] [PubMed] [Google Scholar]
  233. Shimogori H., Sekitani T., Koyanagi Y., Yamamoto N. Latent HSV-I infection in rat vestibular ganglia. Acta Otolaryngol. 1991;111(6):1031–1036. doi: 10.3109/00016489109100752. [DOI] [PubMed] [Google Scholar]
  234. Shimogori H., Sekitani T., Okazaki H., Hirata T. Detection of HSV-I nucleic acids in rat vestibular ganglia. Acta Otolaryngol Suppl. 1993;503:82–84. doi: 10.3109/00016489309128080. [DOI] [PubMed] [Google Scholar]
  235. Silins S. L., Sculley T. B. Burkitt's lymphoma cells are resistant to programmed cell death in the presence of the Epstein-Barr virus latent antigen EBNA-4. Int J Cancer. 1995 Jan 3;60(1):65–72. doi: 10.1002/ijc.2910600110. [DOI] [PubMed] [Google Scholar]
  236. Simmons A., Nash A. A. Effect of B cell suppression on primary infection and reinfection of mice with herpes simplex virus. J Infect Dis. 1987 Apr;155(4):649–654. doi: 10.1093/infdis/155.4.649. [DOI] [PubMed] [Google Scholar]
  237. Simmons A., Tscharke D. C. Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J Exp Med. 1992 May 1;175(5):1337–1344. doi: 10.1084/jem.175.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Simmons A., Tscharke D., Speck P. The role of immune mechanisms in control of herpes simplex virus infection of the peripheral nervous system. Curr Top Microbiol Immunol. 1992;179:31–56. doi: 10.1007/978-3-642-77247-4_3. [DOI] [PubMed] [Google Scholar]
  239. Sköldenberg B. Herpes simplex encephalitis. Scand J Infect Dis Suppl. 1991;80:40–46. [PubMed] [Google Scholar]
  240. Smibert C. A., Popova B., Xiao P., Capone J. P., Smiley J. R. Herpes simplex virus VP16 forms a complex with the virion host shutoff protein vhs. J Virol. 1994 Apr;68(4):2339–2346. doi: 10.1128/jvi.68.4.2339-2346.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Smith R. L., Pizer L. I., Johnson E. M., Jr, Wilcox C. L. Activation of second-messenger pathways reactivates latent herpes simplex virus in neuronal cultures. Virology. 1992 May;188(1):311–318. doi: 10.1016/0042-6822(92)90760-m. [DOI] [PubMed] [Google Scholar]
  242. Snowden B. W., Blair E. D., Wagner E. K. Transcriptional activation with concurrent or nonconcurrent template replication has differential effects on transient expression from herpes simplex virus promoters. Virus Genes. 1989 Mar;2(2):129–145. doi: 10.1007/BF00315257. [DOI] [PubMed] [Google Scholar]
  243. Soares K., Hwang D. Y., Ramakrishnan R., Schmidt M. C., Fink D. J., Glorioso J. C. cis-acting elements involved in transcriptional regulation of the herpes simplex virus type 1 latency-associated promoter 1 (LAP1) in vitro and in vivo. J Virol. 1996 Aug;70(8):5384–5394. doi: 10.1128/jvi.70.8.5384-5394.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Speck P. G., Simmons A. Divergent molecular pathways of productive and latent infection with a virulent strain of herpes simplex virus type 1. J Virol. 1991 Aug;65(8):4001–4005. doi: 10.1128/jvi.65.8.4001-4005.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Spivack J. G., Fraser N. W. Expression of herpes simplex virus type 1 (HSV-1) latency-associated transcripts and transcripts affected by the deletion in avirulent mutant HFEM: evidence for a new class of HSV-1 genes. J Virol. 1988 Sep;62(9):3281–3287. doi: 10.1128/jvi.62.9.3281-3287.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Spivack J. G., Fraser N. W. Expression of herpes simplex virus type 1 latency-associated transcripts in the trigeminal ganglia of mice during acute infection and reactivation of latent infection. J Virol. 1988 May;62(5):1479–1485. doi: 10.1128/jvi.62.5.1479-1485.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Spivack J. G., Woods G. M., Fraser N. W. Identification of a novel latency-specific splice donor signal within the herpes simplex virus type 1 2.0-kilobase latency-associated transcript (LAT): translation inhibition of LAT open reading frames by the intron within the 2.0-kilobase LAT. J Virol. 1991 Dec;65(12):6800–6810. doi: 10.1128/jvi.65.12.6800-6810.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Stanberry L. R., Floyd-Reising S. A., Connelly B. L., Alter S. J., Gilchrist M. J., Rubio C., Myers M. G. Herpes simplex viremia: report of eight pediatric cases and review of the literature. Clin Infect Dis. 1994 Mar;18(3):401–407. doi: 10.1093/clinids/18.3.401. [DOI] [PubMed] [Google Scholar]
  249. Stanberry L. R., Kern E. R., Richards J. T., Abbott T. M., Overall J. C., Jr Genital herpes in guinea pigs: pathogenesis of the primary infection and description of recurrent disease. J Infect Dis. 1982 Sep;146(3):397–404. doi: 10.1093/infdis/146.3.397. [DOI] [PubMed] [Google Scholar]
  250. Steiner I., Spivack J. G., Deshmane S. L., Ace C. I., Preston C. M., Fraser N. W. A herpes simplex virus type 1 mutant containing a nontransinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. J Virol. 1990 Apr;64(4):1630–1638. doi: 10.1128/jvi.64.4.1630-1638.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Steiner I., Spivack J. G., Lirette R. P., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J. 1989 Feb;8(2):505–511. doi: 10.1002/j.1460-2075.1989.tb03404.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Stevens J. G., Cook M. L. Latent herpes simplex virus in spinal ganglia of mice. Science. 1971 Aug 27;173(3999):843–845. doi: 10.1126/science.173.3999.843. [DOI] [PubMed] [Google Scholar]
  253. Stevens J. G., Cook M. L. Maintenance of latent herpetic infection: an apparent role for anti-viral IgG. J Immunol. 1974 Dec;113(6):1685–1693. [PubMed] [Google Scholar]
  254. Stevens J. G. HSV-1 neuroinvasiveness. Intervirology. 1993;35(1-4):152–163. doi: 10.1159/000150306. [DOI] [PubMed] [Google Scholar]
  255. Stevens J. G., Haarr L., Porter D. D., Cook M. L., Wagner E. K. Prominence of the herpes simplex virus latency-associated transcript in trigeminal ganglia from seropositive humans. J Infect Dis. 1988 Jul;158(1):117–123. doi: 10.1093/infdis/158.1.117. [DOI] [PubMed] [Google Scholar]
  256. Stevens J. G. Human herpesviruses: a consideration of the latent state. Microbiol Rev. 1989 Sep;53(3):318–332. doi: 10.1128/mr.53.3.318-332.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  257. Stevens J. G. Latent herpes simplex virus and the nervous system,. Curr Top Microbiol Immunol. 1975;70:31–50. doi: 10.1007/978-3-642-66101-3_2. [DOI] [PubMed] [Google Scholar]
  258. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science. 1987 Feb 27;235(4792):1056–1059. doi: 10.1126/science.2434993. [DOI] [PubMed] [Google Scholar]
  259. Stow N. D., Stow E. C. Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110. J Gen Virol. 1986 Dec;67(Pt 12):2571–2585. doi: 10.1099/0022-1317-67-12-2571. [DOI] [PubMed] [Google Scholar]
  260. Sugita K., Kurumada H., Eguchi M., Furukawa T. Human herpesvirus 6 infection associated with hemophagocytic syndrome. Acta Haematol. 1995;93(2-4):108–109. doi: 10.1159/000204122. [DOI] [PubMed] [Google Scholar]
  261. Suzuki S., Martin J. R. Herpes simplex virus type 2 transcripts in trigeminal ganglia during acute and latent infection in mice. J Neurol Sci. 1989 Nov;93(2-3):239–251. doi: 10.1016/0022-510x(89)90194-9. [DOI] [PubMed] [Google Scholar]
  262. Tanaka S., Minagawa H., Toh Y., Liu Y., Mori R. Analysis by RNA-PCR of latency and reactivation of herpes simplex virus in multiple neuronal tissues. J Gen Virol. 1994 Oct;75(Pt 10):2691–2698. doi: 10.1099/0022-1317-75-10-2691. [DOI] [PubMed] [Google Scholar]
  263. Tenser R. B., Edris W. A., Hay K. A., de Galan B. E. Expression of herpes simplex virus type 2 latency-associated transcript in neurons and nonneurons. J Virol. 1991 May;65(5):2745–2750. doi: 10.1128/jvi.65.5.2745-2750.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Tenser R. B., Hyman R. W. Latent herpesvirus infections of neurons in guinea pigs and humans. Yale J Biol Med. 1987 Mar-Apr;60(2):159–167. [PMC free article] [PubMed] [Google Scholar]
  265. Thompson R. L., Cook M. L., Devi-Rao G. B., Wagner E. K., Stevens J. G. Functional and molecular analyses of the avirulent wild-type herpes simplex virus type 1 strain KOS. J Virol. 1986 Apr;58(1):203–211. doi: 10.1128/jvi.58.1.203-211.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Tomazin R., Hill A. B., Jugovic P., York I., van Endert P., Ploegh H. L., Andrews D. W., Johnson D. C. Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J. 1996 Jul 1;15(13):3256–3266. [PMC free article] [PubMed] [Google Scholar]
  267. Torpey D. J., 3rd, Lindsley M. D., Rinaldo C. R., Jr HLA-restricted lysis of herpes simplex virus-infected monocytes and macrophages mediated by CD4+ and CD8+ T lymphocytes. J Immunol. 1989 Feb 15;142(4):1325–1332. [PubMed] [Google Scholar]
  268. Trousdale M. D., Steiner I., Spivack J. G., Deshmane S. L., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. In vivo and in vitro reactivation impairment of a herpes simplex virus type 1 latency-associated transcript variant in a rabbit eye model. J Virol. 1991 Dec;65(12):6989–6993. doi: 10.1128/jvi.65.12.6989-6993.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Valyi-Nagy T., Deshmane S. L., Raengsakulrach B., Nicosia M., Gesser R. M., Wysocka M., Dillner A., Fraser N. W. Herpes simplex virus type 1 mutant strain in1814 establishes a unique, slowly progressing infection in SCID mice. J Virol. 1992 Dec;66(12):7336–7345. doi: 10.1128/jvi.66.12.7336-7345.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Valyi-Nagy T., Deshmane S. L., Spivack J. G., Steiner I., Ace C. I., Preston C. M., Fraser N. W. Investigation of herpes simplex virus type 1 (HSV-1) gene expression and DNA synthesis during the establishment of latent infection by an HSV-1 mutant, in1814, that does not replicate in mouse trigeminal ganglia. J Gen Virol. 1991 Mar;72(Pt 3):641–649. doi: 10.1099/0022-1317-72-3-641. [DOI] [PubMed] [Google Scholar]
  271. Valyi-Nagy T., Fareed M. U., O'Keefe J. S., Gesser R. M., MacLean A. R., Brown S. M., Spivack J. G., Fraser N. W. The herpes simplex virus type 1 strain 17+ gamma 34.5 deletion mutant 1716 is avirulent in SCID mice. J Gen Virol. 1994 Aug;75(Pt 8):2059–2063. doi: 10.1099/0022-1317-75-8-2059. [DOI] [PubMed] [Google Scholar]
  272. Varnell E. D., Kaufman H. E., Hill J. M., Wolf R. H. A primate model for acute and recurrent herpetic keratitis. Curr Eye Res. 1987 Jan;6(1):277–279. doi: 10.3109/02713688709020105. [DOI] [PubMed] [Google Scholar]
  273. Wagner E. K., Devi-Rao G., Feldman L. T., Dobson A. T., Zhang Y. F., Flanagan W. M., Stevens J. G. Physical characterization of the herpes simplex virus latency-associated transcript in neurons. J Virol. 1988 Apr;62(4):1194–1202. doi: 10.1128/jvi.62.4.1194-1202.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Wagner E. K., Flanagan W. M., Devi-Rao G., Zhang Y. F., Hill J. M., Anderson K. P., Stevens J. G. The herpes simplex virus latency-associated transcript is spliced during the latent phase of infection. J Virol. 1988 Dec;62(12):4577–4585. doi: 10.1128/jvi.62.12.4577-4585.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. Wagner E. K., Guzowski J. F., Singh J. Transcription of the herpes simplex virus genome during productive and latent infection. Prog Nucleic Acid Res Mol Biol. 1995;51:123–165. doi: 10.1016/s0079-6603(08)60878-8. [DOI] [PubMed] [Google Scholar]
  276. Warren K. G., Brown S. M., Wroblewska Z., Gilden D., Koprowski H., Subak-Sharpe J. Isolation of latent herpes simplex virus from the superior cervical and vagus ganglions of human beings. N Engl J Med. 1978 May 11;298(19):1068–1069. doi: 10.1056/NEJM197805112981907. [DOI] [PubMed] [Google Scholar]
  277. Wechsler S. L., Nesburn A. B., Watson R., Slanina S. M., Ghiasi H. Fine mapping of the latency-related gene of herpes simplex virus type 1: alternative splicing produces distinct latency-related RNAs containing open reading frames. J Virol. 1988 Nov;62(11):4051–4058. doi: 10.1128/jvi.62.11.4051-4058.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  278. Wechsler S. L., Nesburn A. B., Watson R., Slanina S., Ghiasi H. Fine mapping of the major latency-related RNA of herpes simplex virus type 1 in humans. J Gen Virol. 1988 Dec;69(Pt 12):3101–3106. doi: 10.1099/0022-1317-69-12-3101. [DOI] [PubMed] [Google Scholar]
  279. Wechsler S. L., Nesburn A. B., Zwaagstra J., Ghiasi H. Sequence of the latency-related gene of herpes simplex virus type 1. Virology. 1989 Jan;168(1):168–172. doi: 10.1016/0042-6822(89)90416-9. [DOI] [PubMed] [Google Scholar]
  280. Weller T. H. Varicella and herpes zoster: a perspective and overview. J Infect Dis. 1992 Aug;166 (Suppl 1):S1–S6. [PubMed] [Google Scholar]
  281. Wheatley S. C., Dent C. L., Wood J. N., Latchman D. S. Elevation of cyclic AMP levels in cell lines derived from latently infectable sensory neurons increases their permissivity for herpes virus infection by activating the viral immediate-early 1 gene promoter. Brain Res Mol Brain Res. 1992 Jan;12(1-3):149–154. doi: 10.1016/0169-328x(92)90078-p. [DOI] [PubMed] [Google Scholar]
  282. Wigdahl B. L., Scheck A. C., De Clercq E., Rapp F. High efficiency latency and activation of herpes simplex virus in human cells. Science. 1982 Sep 17;217(4565):1145–1146. doi: 10.1126/science.6180477. [DOI] [PubMed] [Google Scholar]
  283. Wigdahl B., Scheck A. C., Ziegler R. J., De Clercq E., Rapp F. Analysis of the herpes simplex virus genome during in vitro latency in human diploid fibroblasts and rat sensory neurons. J Virol. 1984 Jan;49(1):205–213. doi: 10.1128/jvi.49.1.205-213.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Wigdahl B., Smith C. A., Traglia H. M., Rapp F. Herpes simplex virus latency in isolated human neurons. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6217–6221. doi: 10.1073/pnas.81.19.6217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  285. Wilcox C. L., Smith R. L., Freed C. R., Johnson E. M., Jr Nerve growth factor-dependence of herpes simplex virus latency in peripheral sympathetic and sensory neurons in vitro. J Neurosci. 1990 Apr;10(4):1268–1275. doi: 10.1523/JNEUROSCI.10-04-01268.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Wilcox C. M., Schwartz D. A., Clark W. S. Esophageal ulceration in human immunodeficiency virus infection. Causes, response to therapy, and long-term outcome. Ann Intern Med. 1995 Jul 15;123(2):143–149. doi: 10.7326/0003-4819-123-2-199507150-00010. [DOI] [PubMed] [Google Scholar]
  287. Wildy P., Gell P. G. The host response to herpes simplex virus. Br Med Bull. 1985 Jan;41(1):86–91. doi: 10.1093/oxfordjournals.bmb.a072032. [DOI] [PubMed] [Google Scholar]
  288. Willey D. E., Trousdale M. D., Nesburn A. B. Reactivation of murine latent HSV infection by epinephrine iontophoresis. Invest Ophthalmol Vis Sci. 1984 Aug;25(8):945–950. [PubMed] [Google Scholar]
  289. Wu C. A., Nelson N. J., McGeoch D. J., Challberg M. D. Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. J Virol. 1988 Feb;62(2):435–443. doi: 10.1128/jvi.62.2.435-443.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Wu L., Morahan P. S. Macrophages and other nonspecific defenses: role in modulating resistance against herpes simplex virus. Curr Top Microbiol Immunol. 1992;179:89–110. doi: 10.1007/978-3-642-77247-4_6. [DOI] [PubMed] [Google Scholar]
  291. Wu T. T., Su Y. H., Block T. M., Taylor J. M. Evidence that two latency-associated transcripts of herpes simplex virus type 1 are nonlinear. J Virol. 1996 Sep;70(9):5962–5967. doi: 10.1128/jvi.70.9.5962-5967.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Yeh L., Schaffer P. A. A novel class of transcripts expressed with late kinetics in the absence of ICP4 spans the junction between the long and short segments of the herpes simplex virus type 1 genome. J Virol. 1993 Dec;67(12):7373–7382. doi: 10.1128/jvi.67.12.7373-7382.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  293. York I. A., Roop C., Andrews D. W., Riddell S. R., Graham F. L., Johnson D. C. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell. 1994 May 20;77(4):525–535. doi: 10.1016/0092-8674(94)90215-1. [DOI] [PubMed] [Google Scholar]
  294. Yoshikawa T., Hill J. M., Stanberry L. R., Bourne N., Kurawadwala J. F., Krause P. R. The characteristic site-specific reactivation phenotypes of HSV-1 and HSV-2 depend upon the latency-associated transcript region. J Exp Med. 1996 Aug 1;184(2):659–664. doi: 10.1084/jem.184.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  295. Yoshikawa T., Stanberry L. R., Bourne N., Krause P. R. Downstream regulatory elements increase acute and latent herpes simplex virus type 2 latency-associated transcript expression but do not influence recurrence phenotype or establishment of latency. J Virol. 1996 Mar;70(3):1535–1541. doi: 10.1128/jvi.70.3.1535-1541.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  296. Youssoufian H., Hammer S. M., Hirsch M. S., Mulder C. Methylation of the viral genome in an in vitro model of herpes simplex virus latency. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2207–2210. doi: 10.1073/pnas.79.7.2207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  297. Yuhasz S. A., Stevens J. G. Glycoprotein B is a specific determinant of herpes simplex virus type 1 neuroinvasiveness. J Virol. 1993 Oct;67(10):5948–5954. doi: 10.1128/jvi.67.10.5948-5954.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Zhu Z., Cai W., Schaffer P. A. Cooperativity among herpes simplex virus type 1 immediate-early regulatory proteins: ICP4 and ICP27 affect the intracellular localization of ICP0. J Virol. 1994 May;68(5):3027–3040. doi: 10.1128/jvi.68.5.3027-3040.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  299. Ziegler R. J., Herman R. E. Peripheral infection in culture of rat sensory neurons by herpes simplex virus. Infect Immun. 1980 May;28(2):620–623. doi: 10.1128/iai.28.2.620-623.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  300. Zwaagstra J. C., Ghiasi H., Nesburn A. B., Wechsler S. L. Identification of a major regulatory sequence in the latency associated transcript (LAT) promoter of herpes simplex virus type 1 (HSV-1). Virology. 1991 May;182(1):287–297. doi: 10.1016/0042-6822(91)90672-x. [DOI] [PubMed] [Google Scholar]
  301. Zwaagstra J. C., Ghiasi H., Slanina S. M., Nesburn A. B., Wheatley S. C., Lillycrop K., Wood J., Latchman D. S., Patel K., Wechsler S. L. Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript. J Virol. 1990 Oct;64(10):5019–5028. doi: 10.1128/jvi.64.10.5019-5028.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  302. Zwaagstra J., Ghiasi H., Nesburn A. B., Wechsler S. L. In vitro promoter activity associated with the latency-associated transcript gene of herpes simplex virus type 1. J Gen Virol. 1989 Aug;70(Pt 8):2163–2169. doi: 10.1099/0022-1317-70-8-2163. [DOI] [PubMed] [Google Scholar]
  303. de Bruyn Kops A., Knipe D. M. Formation of DNA replication structures in herpes virus-infected cells requires a viral DNA binding protein. Cell. 1988 Dec 2;55(5):857–868. doi: 10.1016/0092-8674(88)90141-9. [DOI] [PubMed] [Google Scholar]

Articles from Clinical Microbiology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES