Skip to main content
Heart logoLink to Heart
. 2000 Mar;83(3):290–294. doi: 10.1136/heart.83.3.290

Patients with uncomplicated coronary artery disease have reduced heart rate variability mainly affecting vagal tone

B Wennerblom 1, L Lurje 1, H Tygesen 1, R Vahisalo 1, A Hjalmarson 1
PMCID: PMC1729341  PMID: 10677408

Abstract

AIM—To investigate whether uncomplicated chronic coronary artery disease causes changes in heart rate variability and if so, whether the heart rate variability pattern is different from that described in patients with acute myocardial infarction.
METHODS—Heart rate variability was studied in 65 patients with angina who had no previous myocardial infarcts, no other diseases, and were on no drug that could influence the sinus node. Results were compared with 33 age matched healthy subjects. The diagnosis of coronary artery disease in angina patients was established by coronary angiography in 58, by thallium scintigraphy in six, and by exercise test only in one. Patients and controls were Holter monitored 24 hours outside hospital, and heart rate variability was calculated in the frequency domain as global power (GP: 0.01-1.00 Hz), low frequency peak (LF: 0.04-0.15 Hz), high frequency peak (HF: 0.15-0.40 Hz), LF/HF in ms2, and in the time domain as SDNN (SD of normal RR intervals), SDANN (SD of all five minute mean normal RR intervals), SD (mean of all five minute SDs of mean RR intervals), rMSSD (root mean square of differences of successive normal RR intervals) (all in ms), and pNN50 (proportion of adjacent normal RR intervals differing more than 50 ms from the preceding RR interval) as per cent.
RESULTS—The mean age in patients and controls was 60.4 (range 32-81) and 59.1 (32-77) years, respectively (NS), the male/female ratio, 57/65 and 24/33 (NS), and the mean time of Holter monitoring, 23.0 (18-24) and 22.8 (18-24) hours (NS). Mortality in angina patients was 0% (0/65) at one year, 0% (0/56) at two years, and 3% (1/33) at three years. Compared with healthy subjects angina patients showed a reduction in GP (p = 0.007), HF (p = 0.02), LF (p = 0.02), SD (p = 0.02), rMSSD (p = 0.01), and pNN50 (p = 0.01). No significant difference was found in RR, LF/HF, SDNN, or SDANN.
CONCLUSIONS—Uncomplicated coronary artery disease without previous acute myocardial infarction was associated with reduced high and low frequency heart rate variability, including vagal tone. SDANN and SDNN, expressing ultra low and very low frequencies which are known to reflect prognosis after acute myocardial infarction, were less affected. This is in agreement with the good prognosis in uncomplicated angina in this study.


Keywords: heart rate variability; angina pectoris; coronary artery disease; myocardial infarction; prognosis

Full Text

The Full Text of this article is available as a PDF (101.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airaksinen K. E., Ikäheimo M. J., Linnaluoto M. K., Niemelä M., Takkunen J. T. Impaired vagal heart rate control in coronary artery disease. Br Heart J. 1987 Dec;58(6):592–597. doi: 10.1136/hrt.58.6.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger A. C., Cohen R. J. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981 Jul 10;213(4504):220–222. doi: 10.1126/science.6166045. [DOI] [PubMed] [Google Scholar]
  3. Bigger J. T., Jr, Fleiss J. L., Steinman R. C., Rolnitzky L. M., Kleiger R. E., Rottman J. N. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation. 1992 Jan;85(1):164–171. doi: 10.1161/01.cir.85.1.164. [DOI] [PubMed] [Google Scholar]
  4. Cobb L. A., Werner J. A., Trobaugh G. B. Sudden cardiac death. I. A decade's experience with out-of-hospital resuscitation. Mod Concepts Cardiovasc Dis. 1980 Jun;49(6):31–36. [PubMed] [Google Scholar]
  5. Gillis R. A., Corr P. B., Pace D. G., Evans D. E., DiMicco J., Pearle D. L. Role of the nervous system in experimentally induced arrhythmias. Cardiology. 1976;61(1):37–49. doi: 10.1159/000169746. [DOI] [PubMed] [Google Scholar]
  6. Kamath M. V., Fallen E. L. Diurnal variations of neurocardiac rhythms in acute myocardial infarction. Am J Cardiol. 1991 Jul 15;68(2):155–160. doi: 10.1016/0002-9149(91)90736-5. [DOI] [PubMed] [Google Scholar]
  7. Kleiger R. E., Miller J. P., Bigger J. T., Jr, Moss A. J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987 Feb 1;59(4):256–262. doi: 10.1016/0002-9149(87)90795-8. [DOI] [PubMed] [Google Scholar]
  8. Kolman B. S., Verrier R. L., Lown B. The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: role of sympathetic-parasympathetic interactions. Circulation. 1975 Oct;52(4):578–585. doi: 10.1161/01.cir.52.4.578. [DOI] [PubMed] [Google Scholar]
  9. Lombardi F., Sandrone G., Mortara A., La Rovere M. T., Colombo E., Guzzetti S., Malliani A. Circadian variation of spectral indices of heart rate variability after myocardial infarction. Am Heart J. 1992 Jun;123(6):1521–1529. doi: 10.1016/0002-8703(92)90804-5. [DOI] [PubMed] [Google Scholar]
  10. Lown B., Verrier R. L. Neural activity and ventricular fibrillation. N Engl J Med. 1976 May 20;294(21):1165–1170. doi: 10.1056/NEJM197605202942107. [DOI] [PubMed] [Google Scholar]
  11. Malik M., Farrell T., Cripps T., Camm A. J. Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur Heart J. 1989 Dec;10(12):1060–1074. doi: 10.1093/oxfordjournals.eurheartj.a059428. [DOI] [PubMed] [Google Scholar]
  12. Pagani M., Lombardi F., Guzzetti S., Rimoldi O., Furlan R., Pizzinelli P., Sandrone G., Malfatto G., Dell'Orto S., Piccaluga E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986 Aug;59(2):178–193. doi: 10.1161/01.res.59.2.178. [DOI] [PubMed] [Google Scholar]
  13. Pomeranz B., Macaulay R. J., Caudill M. A., Kutz I., Adam D., Gordon D., Kilborn K. M., Barger A. C., Shannon D. C., Cohen R. J. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985 Jan;248(1 Pt 2):H151–H153. doi: 10.1152/ajpheart.1985.248.1.H151. [DOI] [PubMed] [Google Scholar]
  14. Rich M. W., Saini J. S., Kleiger R. E., Carney R. M., teVelde A., Freedland K. E. Correlation of heart rate variability with clinical and angiographic variables and late mortality after coronary angiography. Am J Cardiol. 1988 Oct 1;62(10 Pt 1):714–717. doi: 10.1016/0002-9149(88)91208-8. [DOI] [PubMed] [Google Scholar]
  15. Skinner J. E., Lie J. T., Entman M. L. Modification of ventricular fibrillation latency following coronary artery occlusion in the conscious pig. Circulation. 1975 Apr;51(4):656–667. doi: 10.1161/01.cir.51.4.656. [DOI] [PubMed] [Google Scholar]
  16. Verrier R. L., Lown B. Autonomic nervous system and malignant cardiac arrhythmias. Res Publ Assoc Res Nerv Ment Dis. 1981;59:273–291. [PubMed] [Google Scholar]
  17. Wennerblom B., Lurje L., Westberg S., Johansson M., Lomsky M., Vahisalo R., Hjalmarson A. Effects on heart rate variability of isosorbide-5-mononitrate and metoprolol in patients with recent onset of angina pectoris. Cardiology. 1998;89(2):87–93. doi: 10.1159/000006762. [DOI] [PubMed] [Google Scholar]
  18. Yoshida K., Yoshikawa J., Hozumi T., Yamaura Y., Akasaka T., Fukaya T., Kato H. Detection of left main coronary artery stenosis by transesophageal color Doppler and two-dimensional echocardiography. Circulation. 1990 Apr;81(4):1271–1276. doi: 10.1161/01.cir.81.4.1271. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES