Skip to main content
Heart logoLink to Heart
. 2000 Apr;83(4):456–461. doi: 10.1136/heart.83.4.456

Hibernating myocardium: morphological correlates of inotropic stimulation and glucose uptake

D Pagano 1, J Townend 1, D Parums 1, R Bonser 1, P Camici 1
PMCID: PMC1729369  PMID: 10722551

Abstract

BACKGROUND—In patients with postischaemic left ventricular dysfunction, segments recovering function after revascularisation (hibernating myocardium) may not respond during dobutamine echocardiography, despite preserved [18F] 2-fluoro-2-deoxy-D-glucose (FDG) uptake at positron emission tomography.
OBJECTIVE—To investigate whether this lack of response might reflect the degree of ultrastructural change in hibernating myocardium.
METHODS—Transmural biopsies were obtained from 22 dysfunctional segments in 22 patients during coronary artery bypass grafting and examined by light and electron microscopy. Wall motion scores and coronary vasodilator reserve were assessed before and after coronary artery bypass grafting (CABG).
RESULTS—Mean (SD) wall motion score improved in all segments following CABG (from 2.24 (0.4) to 1.55 (0.4); p < 0.0001), confirming hibernating myocardium. In these segments myocardial blood flow (positron emission tomography with H215O) before CABG was similar to that in normal volunteers (1.02 (0.24) v 1.02 (0.23) ml/min/g), while the coronary vasodilator reserve was blunted (1.26 (0.7) v 3.2 (1.6); p < 0.0001). Myocardial blood flow was unchanged after CABG, whereas coronary vasodilator reserve increased to 2.10 (0.90) (p < 0.0007). In hibernating myocardium myofibrillar loss, interstitial fibrosis, and glycogen-rich myocytes were more marked than in control donor hearts. On the basis of the response to dobutamine before CABG, two functional groups were identified: group A, segments with inotropic reserve (n = 15); group B, segments without inotropic reserve (n = 7). FDG uptake was similar in group A and group B (0.40 (0.1) v 0.44 (0.1) µmol/min/g). In group B there was more myofibrillar loss (26 (8)% v 11 (5)%; p = 0.0009) and glycogen-rich myocytes (28 (11)% v 17 (10)%; p = 0.02), whereas interstitial fibrosis, myocardial blood flow, and coronary vasodilator reserve were similar in the two groups. Myofibrillar loss was the only independent predictor of inotropic reserve (p = 0.01).
CONCLUSIONS—Hibernating myocardium is characterised by a reduced coronary vasodilator reserve which improves on revascularisation and shows a spectrum of ultrastructural changes that influence the response to dobutamine, while FDG uptake is invariably preserved.


Keywords: coronary artery disease; heart failure; myocardial viability; myocardial blood flow; positron emission tomography

Full Text

The Full Text of this article is available as a PDF (131.2 KB).

Figure 1  .

Figure 1  

Bar chart showing the coronary vasodilator reserve (CVR) in normal volunteers (controls) and in hibernating myocardium before (Hib-Pre) and six months after coronary artery bypass grafting (Hib-Post).

Figure 2  .

Figure 2  

(A) Bar chart showing improvements in wall motion score index (WMSI) six months after coronary artery bypass grafting (CABG) in hibernating segments with inotropic contractile reserve (DE+) and preserved FDG uptake (FDG+) and in those without inotropic contractile reserve (DE−) but preserved glucose uptake (FDG+). *p < 0.001 v baseline in each group. (B) Bar chart comparing the absolute improvements in WMSI in the two groups.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araujo L. I., Lammertsma A. A., Rhodes C. G., McFalls E. O., Iida H., Rechavia E., Galassi A., De Silva R., Jones T., Maseri A. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation. 1991 Mar;83(3):875–885. doi: 10.1161/01.cir.83.3.875. [DOI] [PubMed] [Google Scholar]
  2. Ausma J., Cleutjens J., Thoné F., Flameng W., Ramaekers F., Borgers M. Chronic hibernating myocardium: interstitial changes. Mol Cell Biochem. 1995 Jun 7;147(1-2):35–42. doi: 10.1007/BF00944781. [DOI] [PubMed] [Google Scholar]
  3. Beller G. A. Comparison of 201Tl scintigraphy and low-dose dobutamine echocardiography for the noninvasive assessment of myocardial viability. Circulation. 1996 Dec 1;94(11):2681–2684. doi: 10.1161/01.cir.94.11.2681. [DOI] [PubMed] [Google Scholar]
  4. Bonow R. O. Identification of viable myocardium. Circulation. 1996 Dec 1;94(11):2674–2680. doi: 10.1161/01.cir.94.11.2674. [DOI] [PubMed] [Google Scholar]
  5. Camici P. G., Rimoldi O. Myocardial hibernation vs repetitive stunning in patients. Cardiol Rev. 1999 Jan-Feb;7(1):39–43. doi: 10.1097/00045415-199901000-00013. [DOI] [PubMed] [Google Scholar]
  6. Camici P. G., Wijns W., Borgers M., De Silva R., Ferrari R., Knuuti J., Lammertsma A. A., Liedtke A. J., Paternostro G., Vatner S. F. Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation. 1997 Nov 4;96(9):3205–3214. doi: 10.1161/01.cir.96.9.3205. [DOI] [PubMed] [Google Scholar]
  7. Camici P., Ferrannini E., Opie L. H. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis. 1989 Nov-Dec;32(3):217–238. doi: 10.1016/0033-0620(89)90027-3. [DOI] [PubMed] [Google Scholar]
  8. Chan R. K., Lee K. J., Calafiore P., Berlangieri S. U., McKay W. J., Tonkin A. M. Comparison of dobutamine echocardiography and positron emission tomography in patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol. 1996 Jun;27(7):1601–1607. doi: 10.1016/0735-1097(96)00069-1. [DOI] [PubMed] [Google Scholar]
  9. Chen C., Li L., Chen L. L., Prada J. V., Chen M. H., Fallon J. T., Weyman A. E., Waters D., Gillam L. Incremental doses of dobutamine induce a biphasic response in dysfunctional left ventricular regions subtending coronary stenoses. Circulation. 1995 Aug 15;92(4):756–766. doi: 10.1161/01.cir.92.4.756. [DOI] [PubMed] [Google Scholar]
  10. Depre C., Vanoverschelde J. L., Taegtmeyer H. Glucose for the heart. Circulation. 1999 Feb 2;99(4):578–588. doi: 10.1161/01.cir.99.4.578. [DOI] [PubMed] [Google Scholar]
  11. Depré C., Vanoverschelde J. L., Melin J. A., Borgers M., Bol A., Ausma J., Dion R., Wijns W. Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol. 1995 Mar;268(3 Pt 2):H1265–H1275. doi: 10.1152/ajpheart.1995.268.3.H1265. [DOI] [PubMed] [Google Scholar]
  12. Diamond G. A., Forrester J. S., deLuz P. L., Wyatt H. L., Swan H. J. Post-extrasystolic potentiation of ischemic myocardium by atrial stimulation. Am Heart J. 1978 Feb;95(2):204–209. doi: 10.1016/0002-8703(78)90464-7. [DOI] [PubMed] [Google Scholar]
  13. Elsässer A., Schlepper M., Klövekorn W. P., Cai W. J., Zimmermann R., Müller K. D., Strasser R., Kostin S., Gagel C., Münkel B. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation. 1997 Nov 4;96(9):2920–2931. doi: 10.1161/01.cir.96.9.2920. [DOI] [PubMed] [Google Scholar]
  14. Flameng W., Wouters L., Sergeant P., Lewi P., Borgers M., Thone F., Suy R. Multivariate analysis of angiographic, histologic, and electrocardiographic data in patients with coronary heart disease. Circulation. 1984 Jul;70(1):7–17. doi: 10.1161/01.cir.70.1.7. [DOI] [PubMed] [Google Scholar]
  15. Gerber B. L., Vanoverschelde J. L., Bol A., Michel C., Labar D., Wijns W., Melin J. A. Myocardial blood flow, glucose uptake, and recruitment of inotropic reserve in chronic left ventricular ischemic dysfunction. Implications for the pathophysiology of chronic myocardial hibernation. Circulation. 1996 Aug 15;94(4):651–659. doi: 10.1161/01.cir.94.4.651. [DOI] [PubMed] [Google Scholar]
  16. Heusch G., Schulz R. Hibernating myocardium: a review. J Mol Cell Cardiol. 1996 Dec;28(12):2359–2372. doi: 10.1006/jmcc.1996.0229. [DOI] [PubMed] [Google Scholar]
  17. Li Q. Y., MacAulay M. A., Landymore R. W., Marble A., Dean S., Fris J., Kerstein F. Morphometric analysis on myocardial injury related to the use of high volume potassium cardioplegic solution during ischemic arrest. Pathol Res Pract. 1992 Jun;188(4-5):668–671. doi: 10.1016/S0344-0338(11)80077-4. [DOI] [PubMed] [Google Scholar]
  18. Maes A., Flameng W., Nuyts J., Borgers M., Shivalkar B., Ausma J., Bormans G., Schiepers C., De Roo M., Mortelmans L. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation. 1994 Aug;90(2):735–745. doi: 10.1161/01.cir.90.2.735. [DOI] [PubMed] [Google Scholar]
  19. Marinho N. V., Keogh B. E., Costa D. C., Lammerstma A. A., Ell P. J., Camici P. G. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation. 1996 Feb 15;93(4):737–744. doi: 10.1161/01.cir.93.4.737. [DOI] [PubMed] [Google Scholar]
  20. Marzullo P., Parodi O., Sambuceti G., Giorgetti A., Picano E., Gimelli A., Salvadori P., L'Abbate A. Residual coronary reserve identifies segmental viability in patients with wall motion abnormalities. J Am Coll Cardiol. 1995 Aug;26(2):342–350. doi: 10.1016/0735-1097(95)80005-2. [DOI] [PubMed] [Google Scholar]
  21. McGillem M. J., DeBoe S. F., Friedman H. Z., Mancini G. B. The effects of dopamine and dobutamine on regional function in the presence of rigid coronary stenoses and subcritical impairments of reactive hyperemia. Am Heart J. 1988 May;115(5):970–977. doi: 10.1016/0002-8703(88)90065-8. [DOI] [PubMed] [Google Scholar]
  22. Pagano D., Bonser R. S., Townend J. N., Ordoubadi F., Lorenzoni R., Camici P. G. Predictive value of dobutamine echocardiography and positron emission tomography in identifying hibernating myocardium in patients with postischaemic heart failure. Heart. 1998 Mar;79(3):281–288. doi: 10.1136/hrt.79.3.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Perrone-Filardi P., Pace L., Prastaro M., Squame F., Betocchi S., Soricelli A., Piscione F., Indolfi C., Crisci T., Salvatore M. Assessment of myocardial viability in patients with chronic coronary artery disease. Rest-4-hour-24-hour 201Tl tomography versus dobutamine echocardiography. Circulation. 1996 Dec 1;94(11):2712–2719. doi: 10.1161/01.cir.94.11.2712. [DOI] [PubMed] [Google Scholar]
  24. Picano E., Ostojic M., Varga A., Sicari R., Djordjevic-Dikic A., Nedeljkovic I., Torres M. Combined low dose dipyridamole-dobutamine stress echocardiography to identify myocardial viability. J Am Coll Cardiol. 1996 May;27(6):1422–1428. doi: 10.1016/0735-1097(95)00621-4. [DOI] [PubMed] [Google Scholar]
  25. Schulz R., Guth B. D., Pieper K., Martin C., Heusch G. Recruitment of an inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery. A model of short-term hibernation. Circ Res. 1992 Jun;70(6):1282–1295. doi: 10.1161/01.res.70.6.1282. [DOI] [PubMed] [Google Scholar]
  26. Schwarz E. R., Schoendube F. A., Kostin S., Schmiedtke N., Schulz G., Buell U., Messmer B. J., Morrison J., Hanrath P., vom Dahl J. Prolonged myocardial hibernation exacerbates cardiomyocyte degeneration and impairs recovery of function after revascularization. J Am Coll Cardiol. 1998 Apr;31(5):1018–1026. doi: 10.1016/s0735-1097(98)00041-2. [DOI] [PubMed] [Google Scholar]
  27. Segar D. S., Brown S. E., Sawada S. G., Ryan T., Feigenbaum H. Dobutamine stress echocardiography: correlation with coronary lesion severity as determined by quantitative angiography. J Am Coll Cardiol. 1992 May;19(6):1197–1202. doi: 10.1016/0735-1097(92)90324-g. [DOI] [PubMed] [Google Scholar]
  28. Shivalkar B., Maes A., Borgers M., Ausma J., Scheys I., Nuyts J., Mortelmans L., Flameng W. Only hibernating myocardium invariably shows early recovery after coronary revascularization. Circulation. 1996 Aug 1;94(3):308–315. doi: 10.1161/01.cir.94.3.308. [DOI] [PubMed] [Google Scholar]
  29. Uren N. G., Melin J. A., De Bruyne B., Wijns W., Baudhuin T., Camici P. G. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994 Jun 23;330(25):1782–1788. doi: 10.1056/NEJM199406233302503. [DOI] [PubMed] [Google Scholar]
  30. Vanoverschelde J. L., Wijns W., Depré C., Essamri B., Heyndrickx G. R., Borgers M., Bol A., Melin J. A. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation. 1993 May;87(5):1513–1523. doi: 10.1161/01.cir.87.5.1513. [DOI] [PubMed] [Google Scholar]
  31. Zaret B. L., Wackers F. J. Nuclear cardiology (2). N Engl J Med. 1993 Sep 16;329(12):855–863. doi: 10.1056/NEJM199309163291208. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES