Skip to main content
Heart logoLink to Heart
. 2000 Jul;84(1):46–52. doi: 10.1136/heart.84.1.46

Oxygen uptake versus exercise intensity: a new concept in assessing cardiovascular exercise function in patients with congenital heart disease

T Reybrouck 1, L Mertens 1, S Brusselle 1, M Weymans 1, B Eyskens 1, J Defoor 1, M Gewillig 1
PMCID: PMC1729398  PMID: 10862587

Abstract

OBJECTIVE—To assess the relation between exercise intensity and oxygen uptake during graded exercise in paediatric patients who underwent surgical repair of congenital heart disease, and to compare it with conventional measures of aerobic exercise function.
DESIGN—Cross sectional study. Exercise testing was performed on a treadmill and gas exchange was measured on a breath by breath basis.
PATIENTS—29 patients who underwent an atrial switch operation for transposition of the great arteries (TGA) (mean (SD) age at testing 10.3 (2.5) years) and 30 patients who underwent total repair of tetralogy of Fallot (TF) (age 12.1 (3.3) years) performed graded exercise testing. Exercise responses were compared with data obtained in 24 normal controls (age 11.4 (2.6) years).
RESULTS—The slope of oxygen uptake versus exercise intensity averaged 1.50 (0.64) ml O2/min2/kg in the patients with TGA and 1.68 (0.75) ml O2/min2/kg after TF repair, both lower (p < 0.005) than in normal controls (2.42 (0.68) ml O2/min2/kg). The lower slope of oxygen uptake was correlated with a subnormal value for ventilatory anaerobic threshold, which averaged 78.0 (13.3)% of normal in TGA and 85.1 (10.6)% in TF. This was associated with a steeper slope (p = 0.001) of carbon dioxide output versus oxygen uptake above the ventilatory anaerobic threshold in TGA (1.26 (0.20)) and TF (1.20 (0.18)) compared with the normal controls (1.05 (0.13)), and also a steeper slope of ventilation versus carbon dioxide in TGA (47.0 (15.4)) and TF (41.5 (13.7)) than in the controls (30.3 (8.5)).
CONCLUSIONS—Calculation of the steepness of the slope of oxygen uptake versus exercise intensity is a valid measurement of oxygen flow to the exercising tissues, which may be limited in congenital heart disease.


Keywords: congenital heart disease; exercise testing; oxygen uptake; oxygen uptake kinetics

Full Text

The Full Text of this article is available as a PDF (159.7 KB).

Figure 1  .

Figure 1  

Typical example of the slope of carbon dioxide versus oxygen uptake during graded treadmill exercise in a 14 year old boy with atrial switch operation for transposition of the great arteries. The data represent average values for 10 second intervals. S1 (= 0.79) is the slope of carbon dioxide versus oxygen uptake below the ventilatory anaerobic threshold, and S2 (= 1.23) is the slope of carbon dioxide versus oxygen uptake above the ventilatory threshold up to a heart rate of 170 beats/min. V̇CO2 = carbon dioxide output, expressed as ml/min/kg; V̇O2 = oxygen uptake, expressed as ml/min/kg.

Figure 2  .

Figure 2  

Relation between oxygen uptake and heart rate during graded exercise in patients with transposition of the great arteries and atrial switch (solid circles) and patients with repair of tetralogy of Fallot (solid squares), compared with normal controls (open circles). The data points represent mean values for the different patient groups.

Figure 3  .

Figure 3  

Typical example of the slope of oxygen uptake v exercise intensity during graded treadmill exercise in a 14 year old normal control (open circles ) and in a 16 year old patient after repair for tetralogy of Fallot (solid circles). The data represent average values of oxygen uptake in 10 second intervals. Data collected during the first minute of exercise were omitted because of breathing irregularity at onset of exercise.

Figure 4  .

Figure 4  

Slopes of oxygen uptake v exercise intensity (time) during graded treadmill exercise for normal controls (NL; open circles), patients after tetralogy of Fallot repair (TF; solid squares), and patients with transposition of the great arteries and atrial switch (TGA; solid circles). The slopes represent the mean value for each group compared for subsequent levels of exercise (inclination of the treadmill). Data collected during the first minute of exercise were omitted because of breathing irregularity at the onset of exercise. The data points represent average values and 95% confidence intervals of the mean for oxygen uptake (ml O2/min/kg).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaver W. L., Wasserman K., Whipp B. J. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985) 1986 Jun;60(6):2020–2027. doi: 10.1152/jappl.1986.60.6.2020. [DOI] [PubMed] [Google Scholar]
  2. Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
  3. Cabrera M. E., Chizeck H. J. On the existence of a lactate threshold during incremental exercise: a systems analysis. J Appl Physiol (1985) 1996 May;80(5):1819–1828. doi: 10.1152/jappl.1996.80.5.1819. [DOI] [PubMed] [Google Scholar]
  4. Chua T. P., Clark A. L., Amadi A. A., Coats A. J. Relation between chemosensitivity and the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol. 1996 Mar 1;27(3):650–657. doi: 10.1016/0735-1097(95)00523-4. [DOI] [PubMed] [Google Scholar]
  5. Clark A. L., Gatzoulis M. A., Redington A. N. Ventilatory responses to exercise in adults after repair of tetralogy of Fallot. Br Heart J. 1995 May;73(5):445–449. doi: 10.1136/hrt.73.5.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Douard H., Labbé L., Barat J. L., Broustet J. P., Baudet E., Choussat A. Cardiorespiratory response to exercise after venous switch operation for transposition of the great arteries. Chest. 1997 Jan;111(1):23–29. doi: 10.1378/chest.111.1.23. [DOI] [PubMed] [Google Scholar]
  7. Gilljam T., Eriksson B. O., Sixt R. Cardiac output and pulmonary gas exchange at maximal exercise after atrial redirection for complete transposition. Eur Heart J. 1998 Dec;19(12):1856–1864. doi: 10.1053/euhj.1998.1147. [DOI] [PubMed] [Google Scholar]
  8. Hansen J. E., Sue D. Y., Oren A., Wasserman K. Relation of oxygen uptake to work rate in normal men and men with circulatory disorders. Am J Cardiol. 1987 Mar 1;59(6):669–674. doi: 10.1016/0002-9149(87)91190-8. [DOI] [PubMed] [Google Scholar]
  9. Hughson R. L., Northey D. R., Xing H. C., Dietrich B. H., Cochrane J. E. Alignment of ventilation and gas fraction for breath-by-breath respiratory gas exchange calculations in exercise. Comput Biomed Res. 1991 Apr;24(2):118–128. doi: 10.1016/0010-4809(91)90024-q. [DOI] [PubMed] [Google Scholar]
  10. Kadish A. H., Weisman H. F., Veltri E. P., Epstein A. E., Slepian M. J., Levine J. H. Paradoxical effects of exercise on the QT interval in patients with polymorphic ventricular tachycardia receiving type Ia antiarrhythmic agents. Circulation. 1990 Jan;81(1):14–19. doi: 10.1161/01.cir.81.1.14. [DOI] [PubMed] [Google Scholar]
  11. Koike A., Hiroe M., Adachi H., Yajima T., Nogami A., Ito H., Takamoto T., Taniguchi K., Marumo F. Anaerobic metabolism as an indicator of aerobic function during exercise in cardiac patients. J Am Coll Cardiol. 1992 Jul;20(1):120–126. doi: 10.1016/0735-1097(92)90147-f. [DOI] [PubMed] [Google Scholar]
  12. Meyer K., Hajric R., Westbrook S., Samek L., Lehmann M., Schwaibold M., Betz P., Roskamm H. Ventilatory and lactate threshold determinations in healthy normals and cardiac patients: methodological problems. Eur J Appl Physiol Occup Physiol. 1996;72(5-6):387–393. doi: 10.1007/BF00242266. [DOI] [PubMed] [Google Scholar]
  13. Mocellin R., Gildein P. Velocity of oxygen uptake response at the onset of exercise: A comparison between children after cardiac surgery and healthy boys. Pediatr Cardiol. 1999 Jan-Feb;20(1):17–21. doi: 10.1007/s002469900385. [DOI] [PubMed] [Google Scholar]
  14. Myers J., Ashley E. Dangerous curves. A perspective on exercise, lactate, and the anaerobic threshold. Chest. 1997 Mar;111(3):787–795. doi: 10.1378/chest.111.3.787. [DOI] [PubMed] [Google Scholar]
  15. Myers J., Buchanan N., Walsh D., Kraemer M., McAuley P., Hamilton-Wessler M., Froelicher V. F. Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol. 1991 May;17(6):1334–1342. doi: 10.1016/s0735-1097(10)80144-5. [DOI] [PubMed] [Google Scholar]
  16. Page E., Perrault H., Flore P., Rossignol A. M., Pironneau S., Rocca C., Aguilaniu B. Cardiac output response to dynamic exercise after atrial switch repair for transposition of the great arteries. Am J Cardiol. 1996 Apr 15;77(10):892–895. doi: 10.1016/S0002-9149(97)89193-X. [DOI] [PubMed] [Google Scholar]
  17. Perrault H., Drblik S. P., Montigny M., Davignon A., Lamarre A., Chartrand C., Stanley P. Comparison of cardiovascular adjustments to exercise in adolescents 8 to 15 years of age after correction of tetralogy of fallot, ventricular septal defect or atrial septal defect. Am J Cardiol. 1989 Jul 15;64(3):213–217. doi: 10.1016/0002-9149(89)90460-8. [DOI] [PubMed] [Google Scholar]
  18. Reybrouck T., Deroost F., Van der Hauwaert L. G. Evaluation of breath-by-breath measurement of respiratory gas exchange in pediatric exercise testing. Chest. 1992 Jul;102(1):147–152. doi: 10.1378/chest.102.1.147. [DOI] [PubMed] [Google Scholar]
  19. Reybrouck T., Gewillig M., Dumoulin M., van der Hauwaert L. G. Cardiorespiratory exercise performance after Senning operation for transposition of the great arteries. Br Heart J. 1993 Aug;70(2):175–179. doi: 10.1136/hrt.70.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reybrouck T., Mertens L., Kalis N., Weymans M., Dumoulin M., Daenen W., Gewillig M. Dynamics of respiratory gas exchange during exercise after correction of congenital heart disease. J Appl Physiol (1985) 1996 Feb;80(2):458–463. doi: 10.1152/jappl.1996.80.2.458. [DOI] [PubMed] [Google Scholar]
  21. Reybrouck T., Weymans M., Stijns H., Knops J., van der Hauwaert L. Ventilatory anaerobic threshold in healthy children. Age and sex differences. Eur J Appl Physiol Occup Physiol. 1985;54(3):278–284. doi: 10.1007/BF00426145. [DOI] [PubMed] [Google Scholar]
  22. Reybrouck T., Weymans M., Stijns H., Van der Hauwaert L. G. Exercise testing after correction of tetralogy of Fallot: the fallacy of a reduced heart rate response. Am Heart J. 1986 Nov;112(5):998–1003. doi: 10.1016/0002-8703(86)90312-1. [DOI] [PubMed] [Google Scholar]
  23. Rowe S. A., Zahka K. G., Manolio T. A., Horneffer P. J., Kidd L. Lung function and pulmonary regurgitation limit exercise capacity in postoperative tetralogy of Fallot. J Am Coll Cardiol. 1991 Feb;17(2):461–466. doi: 10.1016/s0735-1097(10)80116-0. [DOI] [PubMed] [Google Scholar]
  24. Shimizu M., Myers J., Buchanan N., Walsh D., Kraemer M., McAuley P., Froelicher V. F. The ventilatory threshold: method, protocol, and evaluator agreement. Am Heart J. 1991 Aug;122(2):509–516. doi: 10.1016/0002-8703(91)91009-c. [DOI] [PubMed] [Google Scholar]
  25. Solal A. C., Chabernaud J. M., Gourgon R. Comparison of oxygen uptake during bicycle exercise in patients with chronic heart failure and in normal subjects. J Am Coll Cardiol. 1990 Jul;16(1):80–85. doi: 10.1016/0735-1097(90)90460-7. [DOI] [PubMed] [Google Scholar]
  26. Tanner J. M., Whitehouse R. H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976 Mar;51(3):170–179. doi: 10.1136/adc.51.3.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vetter H. O., Reichart B., Seidel P., Kleinhans E., Büll U., Klinner W. Non-invasive assessment of right and left ventricular volumes 11 to 24 years after corrective surgery on patients with tetralogy of Fallot. Eur J Cardiothorac Surg. 1990;4(1):24–28. doi: 10.1016/1010-7940(90)90236-s. [DOI] [PubMed] [Google Scholar]
  28. Washington R. L., Bricker J. T., Alpert B. S., Daniels S. R., Deckelbaum R. J., Fisher E. A., Gidding S. S., Isabel-Jones J., Kavey R. E., Marx G. R. Guidelines for exercise testing in the pediatric age group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994 Oct;90(4):2166–2179. doi: 10.1161/01.cir.90.4.2166. [DOI] [PubMed] [Google Scholar]
  29. Wasserman K. Diagnosing cardiovascular and lung pathophysiology from exercise gas exchange. Chest. 1997 Oct;112(4):1091–1101. doi: 10.1378/chest.112.4.1091. [DOI] [PubMed] [Google Scholar]
  30. Wasserman K., Zhang Y. Y., Gitt A., Belardinelli R., Koike A., Lubarsky L., Agostoni P. G. Lung function and exercise gas exchange in chronic heart failure. Circulation. 1997 Oct 7;96(7):2221–2227. doi: 10.1161/01.cir.96.7.2221. [DOI] [PubMed] [Google Scholar]
  31. Wessel H. U. Integrated cardiopulmonary approach to exercise testing in pediatrics. Pediatrician. 1986;13(1):26–33. [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES