Abstract
OBJECTIVES—To determine whether effective refractory period (ERP) shortens or lengthens in the first minutes of ischaemia in humans, and the relation between ERP changes and action potential duration (APD). METHODS—ERP and monophasic action potential duration (MAPD) were measured from a single left ventricular epicardial site in 26 patients undergoing coronary artery surgery. Cardiopulmonary bypass was instituted and normothermia maintained. Refractory period was determined by the extrastimulus technique at a basic cycle length of 500 ms, at four times (group 1, 15 patients) or two times (group 2, 11 patients) the preischaemic diastolic threshold. A three minute period of ischaemia was instituted by aortic cross clamping between the input from the pump oxygenator and the heart. RESULTS—After three minutes of ischaemia, mean (SEM) ERP lengthened from 232 (5) ms (control) to 246 (7) ms (p < 0.005) in group 1, and from 256 (10) ms (control) to 348 (25) ms (p < 0.005) in group 2. In the same time MAPD shortened from 256 (5) ms (control) to 189 (9) ms (p < 0.001) with no difference between groups. Thus postrepolarisation refractoriness developed during ischaemia. Before ischaemia, ERP showed a good correlation with APD (R2 = 0.64) but by one minute of ischaemia the correlation was poor (R2 = 0.29). CONCLUSIONS—These results show that during the first three minutes of global ischaemia in patients with coronary artery disease: (1) ERP lengthened in response to both a low and a high stimulus strength; and (2) there was a good correlation between ERP and APD before ischaemia, which was lost by one minute as APD decreased and ERP increased. These findings may have important implications in arrhythmogenesis. Keywords: refractoriness; ischaemia; repolarisation
Full Text
The Full Text of this article is available as a PDF (123.3 KB).
Figure 1 .
Monophasic action potential (MAP) recordings (last S1 and S2) during control (top) and ischaemia (below). The single MAPs on the right show the last MAP in the subsequent S1 train in which the S1-S2 interval is 10 ms shorter and S2 is unable to elicit a response. During ischaemia effective refractory period becomes longer than control and a gap is present between the repolarisation of the steady state beat (S1) and depolarisation of the premature beat (S2).
Figure 2 .

Monophasic action potential at 90% repolarisation (MAPD90) of the left ventricular epicardium in patients with coronary artery disease during control conditions and after one, two, and three minutes of ischaemia (cycle length 500 ms). Values are shown separately for group 1, paced at four times preischaemic diastolic threshold, and group 2, paced at two times preischaemic diastolic threshold. Action potential duration (APD) shortened progressively during ischaemia. Values are means, error bars = SEM.
Figure 3 .

Effective refractory period (ERP) on the left ventricular epicardium in patients with coronary artery disease during control conditions and after one, two, and three minutes of ischaemia. Mean values for ERP showed a small increase during ischaemia in group 1 (high pacing stimulus) and a substantial increase in group 2 (low pacing stimulus). Values are means, error bars = SEM.
Figure 4 .

The relation between action potential duration (APD) and refractoriness is shown as effective refractory period (ERP) minus APD for group 1 and group 2 patients. Under control conditions ERP was shorter than APD. During ischaemia this relation rapidly reversed, ERP outlasting APD (postrepolarisation refractoriness). This effect is more pronounced in group 2 patients (low stimulus strength).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Batsford W. P., Cannom D. S., Zaret B. L. Relations between ventricular refractoriness and regional myocardial blood flow after acute coronary occlusion. Am J Cardiol. 1978 May 22;41(6):1083–1088. doi: 10.1016/0002-9149(78)90861-5. [DOI] [PubMed] [Google Scholar]
- Cobbe S. M., Manley B. S., Alexopoulos D. The influence of acute myocardial ischaemia on the class III antiarrhythmic action of sotalol. Cardiovasc Res. 1985 Nov;19(11):661–667. doi: 10.1093/cvr/19.11.661. [DOI] [PubMed] [Google Scholar]
- Cobbe S. M., Manley B. S. Effects of elevated extracellular potassium concentrations on the class III antiarrhythmic action of sotalol. Cardiovasc Res. 1985 Feb;19(2):69–75. doi: 10.1093/cvr/19.2.69. [DOI] [PubMed] [Google Scholar]
- Cobbe S. M., Manley B. S. The influence of ischaemia on the electrophysiological properties of amiodarone in chronically treated rabbit hearts. Eur Heart J. 1987 Nov;8(11):1241–1248. doi: 10.1093/oxfordjournals.eurheartj.a062199. [DOI] [PubMed] [Google Scholar]
- Coronel R., Fiolet J. W., Wilms-Schopman F. J., Schaapherder A. F., Johnson T. A., Gettes L. S., Janse M. J. Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart. Circulation. 1988 May;77(5):1125–1138. doi: 10.1161/01.cir.77.5.1125. [DOI] [PubMed] [Google Scholar]
- Coronel R., Opthof T., Taggart P., Tytgat J., Veldkamp M. Differential electrophysiology of repolarisation from clone to clinic. Cardiovasc Res. 1997 Mar;33(3):503–517. doi: 10.1016/s0008-6363(96)00271-4. [DOI] [PubMed] [Google Scholar]
- Coronel R., Wilms-Schopman F. J., Opthof T., van Capelle F. J., Janse M. J. Injury current and gradients of diastolic stimulation threshold, TQ potential, and extracellular potassium concentration during acute regional ischemia in the isolated perfused pig heart. Circ Res. 1991 May;68(5):1241–1249. doi: 10.1161/01.res.68.5.1241. [DOI] [PubMed] [Google Scholar]
- Cowan J. C., Hilton C. J., Griffiths C. J., Tansuphaswadikul S., Bourke J. P., Murray A., Campbell R. W. Sequence of epicardial repolarisation and configuration of the T wave. Br Heart J. 1988 Nov;60(5):424–433. doi: 10.1136/hrt.60.5.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cranefield P. F., Wit A. L., Hoffman B. F. Conduction of the cardiac impulse. 3. Characteristics of very slow conduction. J Gen Physiol. 1972 Feb;59(2):227–246. doi: 10.1085/jgp.59.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Culling W., Penny W. J., Sheridan D. J. Effects of sotalol on arrhythmias and electrophysiology during myocardial ischaemia and reperfusion. Cardiovasc Res. 1984 Jul;18(7):397–404. doi: 10.1093/cvr/18.7.397. [DOI] [PubMed] [Google Scholar]
- Downar E., Janse M. J., Durrer D. The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart. Circulation. 1977 Aug;56(2):217–224. doi: 10.1161/01.cir.56.2.217. [DOI] [PubMed] [Google Scholar]
- Elharrar V., Foster P. R., Jirak T. L., Gaum W. E., Zipes D. P. Alterations in canine myocardial excitability during ischemia. Circ Res. 1977 Jan;40(1):98–105. doi: 10.1161/01.res.40.1.98. [DOI] [PubMed] [Google Scholar]
- Fleet W. F., Johnson T. A., Graebner C. A., Gettes L. S. Effect of serial brief ischemic episodes on extracellular K+, pH, and activation in the pig. Circulation. 1985 Oct;72(4):922–932. doi: 10.1161/01.cir.72.4.922. [DOI] [PubMed] [Google Scholar]
- Franz M. R., Bargheer K., Rafflenbeul W., Haverich A., Lichtlen P. R. Monophasic action potential mapping in human subjects with normal electrocardiograms: direct evidence for the genesis of the T wave. Circulation. 1987 Feb;75(2):379–386. doi: 10.1161/01.cir.75.2.379. [DOI] [PubMed] [Google Scholar]
- Franz M. R., Burkhoff D., Spurgeon H., Weisfeldt M. L., Lakatta E. G. In vitro validation of a new cardiac catheter technique for recording monophasic action potentials. Eur Heart J. 1986 Jan;7(1):34–41. doi: 10.1093/oxfordjournals.eurheartj.a061954. [DOI] [PubMed] [Google Scholar]
- Gettes L. S., Reuter H. Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J Physiol. 1974 Aug;240(3):703–724. doi: 10.1113/jphysiol.1974.sp010630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilmour R. F., Jr, Chialvo D. R. Electrical restitution, critical mass, and the riddle of fibrillation. J Cardiovasc Electrophysiol. 1999 Aug;10(8):1087–1089. doi: 10.1111/j.1540-8167.1999.tb00281.x. [DOI] [PubMed] [Google Scholar]
- Gilmour R. F., Jr, Zipes D. P. Different electrophysiological responses of canine endocardium and epicardium to combined hyperkalemia, hypoxia, and acidosis. Circ Res. 1980 Jun;46(6):814–825. doi: 10.1161/01.res.46.6.814. [DOI] [PubMed] [Google Scholar]
- HAN J., MOE G. K. NONUNIFORM RECOVERY OF EXCITABILITY IN VENTRICULAR MUSCLE. Circ Res. 1964 Jan;14:44–60. doi: 10.1161/01.res.14.1.44. [DOI] [PubMed] [Google Scholar]
- HOFFMAN B. F., CRANEFIELD P. F., LEPESCHKIN E., SURAWICZ B., HERRLICH H. C. Comparison of cardiac monophasic action potentials recorded by intracellular and suction electrodes. Am J Physiol. 1959 Jun;196(6):1297–1301. doi: 10.1152/ajplegacy.1959.196.6.1297. [DOI] [PubMed] [Google Scholar]
- Han J., Goel B. G., Hanson C. S. Re-entrant beats induced in the ventricle during coronary occlusion. Am Heart J. 1970 Dec;80(6):778–784. doi: 10.1016/0002-8703(70)90139-0. [DOI] [PubMed] [Google Scholar]
- Horacek T., Neumann M., von Mutius S., Budden M., Meesmann W. Nonhomogeneous electrophysiological changes and the bimodal distribution of early ventricular arrhythmias during acute coronary artery occlusion. Basic Res Cardiol. 1984 Nov-Dec;79(6):649–667. doi: 10.1007/BF01908383. [DOI] [PubMed] [Google Scholar]
- Ino T., Karagueuzian H. S., Hong K., Meesmann M., Mandel W. J., Peter T. Relation of monophasic action potential recorded with contact electrode to underlying transmembrane action potential properties in isolated cardiac tissues: a systematic microelectrode validation study. Cardiovasc Res. 1988 Apr;22(4):255–264. doi: 10.1093/cvr/22.4.255. [DOI] [PubMed] [Google Scholar]
- Janse M. J., Capucci A., Coronel R., Fabius M. A. Variability of recovery of excitability in the normal canine and the ischaemic porcine heart. Eur Heart J. 1985 Nov;6 (Suppl 500):41–52. doi: 10.1093/eurheartj/6.suppl_d.41. [DOI] [PubMed] [Google Scholar]
- Janse M. J., Cinca J., Moréna H., Fiolet J. W., Kléber A. G., de Vries G. P., Becker A. E., Durrer D. The "border zone" in myocardial ischemia. An electrophysiological, metabolic, and histochemical correlation in the pig heart. Circ Res. 1979 Apr;44(4):576–588. doi: 10.1161/01.res.44.4.576. [DOI] [PubMed] [Google Scholar]
- Janse M. J., Wit A. L. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev. 1989 Oct;69(4):1049–1169. doi: 10.1152/physrev.1989.69.4.1049. [DOI] [PubMed] [Google Scholar]
- Kimura S., Bassett A. L., Kohya T., Kozlovskis P. L., Myerburg R. J. Simultaneous recording of action potentials from endocardium and epicardium during ischemia in the isolated cat ventricle: relation of temporal electrophysiologic heterogeneities to arrhythmias. Circulation. 1986 Aug;74(2):401–409. doi: 10.1161/01.cir.74.2.401. [DOI] [PubMed] [Google Scholar]
- Kléber A. G. Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts. Circ Res. 1983 Apr;52(4):442–450. doi: 10.1161/01.res.52.4.442. [DOI] [PubMed] [Google Scholar]
- Koller M. L., Riccio M. L., Gilmour R. F., Jr Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. Am J Physiol. 1998 Nov;275(5 Pt 2):H1635–H1642. doi: 10.1152/ajpheart.1998.275.5.H1635. [DOI] [PubMed] [Google Scholar]
- Kuo C. S., Munakata K., Reddy C. P., Surawicz B. Characteristics and possible mechanism of ventricular arrhythmia dependent on the dispersion of action potential durations. Circulation. 1983 Jun;67(6):1356–1367. doi: 10.1161/01.cir.67.6.1356. [DOI] [PubMed] [Google Scholar]
- Kupersmith J., Antman E. M., Hoffman B. F. In vivo electrophysiological effects of lidocaine in canine acute myocardial infarction. Circ Res. 1975 Jan;36(1):84–91. doi: 10.1161/01.res.36.1.84. [DOI] [PubMed] [Google Scholar]
- Lazzara R., El-Sherif N., Hope R. R., Scherlag B. J. Ventricular arrhythmias and electrophysiological consequences of myocardial ischemia and infarction. Circ Res. 1978 Jun;42(6):740–749. doi: 10.1161/01.res.42.6.740. [DOI] [PubMed] [Google Scholar]
- Pastore J. M., Girouard S. D., Laurita K. R., Akar F. G., Rosenbaum D. S. Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation. 1999 Mar 16;99(10):1385–1394. doi: 10.1161/01.cir.99.10.1385. [DOI] [PubMed] [Google Scholar]
- Penny W. J. The deleterious effects of myocardial catecholamines on cellular electrophysiology and arrhythmias during ischaemia and reperfusion. Eur Heart J. 1984 Dec;5(12):960–973. doi: 10.1093/oxfordjournals.eurheartj.a061616. [DOI] [PubMed] [Google Scholar]
- Qu Z., Weiss J. N., Garfinkel A. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. Am J Physiol. 1999 Jan;276(1 Pt 2):H269–H283. doi: 10.1152/ajpheart.1999.276.1.H269. [DOI] [PubMed] [Google Scholar]
- Ramanathan K. B., Bodenheimer M. M., Banka V. S., Helfant R. H. Electrophysiologic effects of partial coronary occlusion and reperfusion. Am J Cardiol. 1977 Jul;40(1):50–54. doi: 10.1016/0002-9149(77)90099-6. [DOI] [PubMed] [Google Scholar]
- Russell D. C., Oliver M. F. Ventricular refractoriness during acute myocardial ischaemia and its relationship to ventricular fibrillation. Cardiovasc Res. 1978 Apr;12(4):221–227. doi: 10.1093/cvr/12.4.221. [DOI] [PubMed] [Google Scholar]
- Stewart J. R., Burmeister W. E., Burmeister J., Lucchesi B. R. Electrophysiologic and antiarrhythmic effects of phentolamine in experimental coronary artery occlusion and reperfusion in the dog. J Cardiovasc Pharmacol. 1980 Jan-Feb;2(1):77–91. doi: 10.1097/00005344-198001000-00009. [DOI] [PubMed] [Google Scholar]
- Taggart P., Sutton P. M., Treasure T., Lab M., O'Brien W., Runnalls M., Swanton R. H., Emanuel R. W. Monophasic action potentials at discontinuation of cardiopulmonary bypass: evidence for contraction-excitation feedback in man. Circulation. 1988 Jun;77(6):1266–1275. doi: 10.1161/01.cir.77.6.1266. [DOI] [PubMed] [Google Scholar]
- Taggart P., Sutton P., Runnalls M., O'Brien W., Donaldson R., Hayward R., Swanton H., Emanuel R., Treasure T. Use of monophasic action potential recordings during routine coronary-artery bypass surgery as an index of localised myocardial ischaemia. Lancet. 1986 Jun 28;1(8496):1462–1465. doi: 10.1016/s0140-6736(86)91500-x. [DOI] [PubMed] [Google Scholar]
- Watanabe I., Johnson T. A., Buchanan J., Engle C. L., Gettes L. S. Effect of graded coronary flow reduction on ionic, electrical, and mechanical indexes of ischemia in the pig. Circulation. 1987 Nov;76(5):1127–1134. doi: 10.1161/01.cir.76.5.1127. [DOI] [PubMed] [Google Scholar]
- Wolk R., Cobbe S. M., Hicks M. N., Kane K. A. Effects of lignocaine on dispersion of repolarisation and refractoriness in a working rabbit heart model of regional myocardial ischaemia. J Cardiovasc Pharmacol. 1998 Feb;31(2):253–261. doi: 10.1097/00005344-199802000-00011. [DOI] [PubMed] [Google Scholar]
- Yellon D. M., Alkhulaifi A. M., Pugsley W. B. Preconditioning the human myocardium. Lancet. 1993 Jul 31;342(8866):276–277. doi: 10.1016/0140-6736(93)91819-8. [DOI] [PubMed] [Google Scholar]
- el-Sherif N., Scherlag B. J., Lazarra R., Samet P. Pathophysiology of tachycardia- and bradycardia-dependent block in the canine proximal His-Purkinje system after acute myocardial ischemia. Am J Cardiol. 1974 Apr;33(4):529–540. doi: 10.1016/0002-9149(74)90613-4. [DOI] [PubMed] [Google Scholar]

