Skip to main content
Clinical Microbiology Reviews logoLink to Clinical Microbiology Reviews
. 1997 Oct;10(4):781–791. doi: 10.1128/cmr.10.4.781

Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications.

H F Chambers 1
PMCID: PMC172944  PMID: 9336672

Abstract

Methicillin resistance in staphylococci is determined by mec, composed of 50 kb or more of DNA found only in methicillin-resistant strains. mec contains mecA, the gene for penicillin-binding protein 2a (PBP 2a); mecI and mecR1, regulatory genes controlling mecA expression; and numerous other elements and resistance determinants. A distinctive feature of methicillin resistance is its heterogeneous expression. Borderline resistance, a low-level type of resistance to methicillin exhibited by strains lacking mecA, is associated with modifications in native PBPs, beta-lactamase hyperproduction, or possibly a methicillinase. The resistance phenotype is influenced by numerous factors, including mec and beta-lactamase (bla) regulatory elements, fem factors, and yet to be identified chromosomal loci. The heterogeneous nature of methicillin resistance confounds susceptibility testing. Methodologies based on the detection of mecA are the most accurate. Vancomycin is the drug of choice for treatment of infection caused by methicillin-resistant strains. PBP 2a confers cross-resistance to most currently available beta-lactam antibiotics. Investigational agents that bind PBP 2a at low concentrations appear promising but have not been tested in humans. Alternatives to vancomycin are few due to the multiple drug resistances typical of methicillin-resistant staphylococci.

Full Text

The Full Text of this article is available as a PDF (250.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer G. L., Niemeyer D. M. Origin and evolution of DNA associated with resistance to methicillin in staphylococci. Trends Microbiol. 1994 Oct;2(10):343–347. doi: 10.1016/0966-842x(94)90608-4. [DOI] [PubMed] [Google Scholar]
  2. Archer G. L., Niemeyer D. M., Thanassi J. A., Pucci M. J. Dissemination among staphylococci of DNA sequences associated with methicillin resistance. Antimicrob Agents Chemother. 1994 Mar;38(3):447–454. doi: 10.1128/aac.38.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ardati K. O., Thirumoorthi M. C., Dajani A. S. Intravenous trimethoprim-sulfamethoxazole in the treatment of serious infections in children. J Pediatr. 1979 Nov;95(5 Pt 1):801–806. doi: 10.1016/s0022-3476(79)80740-4. [DOI] [PubMed] [Google Scholar]
  4. BARBER M. Methicillin-resistant staphylococci. J Clin Pathol. 1961 Jul;14:385–393. doi: 10.1136/jcp.14.4.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barg N., Chambers H., Kernodle D. Borderline susceptibility to antistaphylococcal penicillins is not conferred exclusively by the hyperproduction of beta-lactamase. Antimicrob Agents Chemother. 1991 Oct;35(10):1975–1979. doi: 10.1128/aac.35.10.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beck W. D., Berger-Bächi B., Kayser F. H. Additional DNA in methicillin-resistant Staphylococcus aureus and molecular cloning of mec-specific DNA. J Bacteriol. 1986 Feb;165(2):373–378. doi: 10.1128/jb.165.2.373-378.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benner E. J., Kayser F. H. Growing clinical significance of methcillin-resistant Staphylococcus aureus. Lancet. 1968 Oct 5;2(7571):741–744. doi: 10.1016/s0140-6736(68)90947-1. [DOI] [PubMed] [Google Scholar]
  8. Berger-Bächi B., Barberis-Maino L., Strässle A., Kayser F. H. FemA, a host-mediated factor essential for methicillin resistance in Staphylococcus aureus: molecular cloning and characterization. Mol Gen Genet. 1989 Oct;219(1-2):263–269. doi: 10.1007/BF00261186. [DOI] [PubMed] [Google Scholar]
  9. Berger-Bächi B. Insertional inactivation of staphylococcal methicillin resistance by Tn551. J Bacteriol. 1983 Apr;154(1):479–487. doi: 10.1128/jb.154.1.479-487.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Berger-Bächi B., Strässle A., Kayser F. H. Characterization of an isogenic set of methicillin-resistant and susceptible mutants of Staphylococcus aureus. Eur J Clin Microbiol. 1986 Dec;5(6):697–701. doi: 10.1007/BF02013308. [DOI] [PubMed] [Google Scholar]
  11. Boyce J. M., Medeiros A. A., Papa E. F., O'Gara C. J. Induction of beta-lactamase and methicillin resistance in unusual strains of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 1990 Jan;25(1):73–81. doi: 10.1093/jac/25.1.73. [DOI] [PubMed] [Google Scholar]
  12. Brown D. F., Reynolds P. E. Intrinsic resistance to beta-lactam antibiotics in Staphylococcus aureus. FEBS Lett. 1980 Dec 29;122(2):275–278. doi: 10.1016/0014-5793(80)80455-8. [DOI] [PubMed] [Google Scholar]
  13. Cantoni L., Wenger A., Glauser M. P., Bille J. Comparative efficacy of amoxicillin-clavulanate, cloxacillin, and vancomycin against methicillin-sensitive and methicillin-resistant Staphylococcus aureus endocarditis in rats. J Infect Dis. 1989 May;159(5):989–993. doi: 10.1093/infdis/159.5.989. [DOI] [PubMed] [Google Scholar]
  14. Chambers H. F., Archer G., Matsuhashi M. Low-level methicillin resistance in strains of Staphylococcus aureus. Antimicrob Agents Chemother. 1989 Apr;33(4):424–428. doi: 10.1128/aac.33.4.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chambers H. F. Detection of methicillin-resistant staphylococci. Infect Dis Clin North Am. 1993 Jun;7(2):425–433. [PubMed] [Google Scholar]
  16. Chambers H. F., Hackbarth C. J. Effect of NaCl and nafcillin on penicillin-binding protein 2a and heterogeneous expression of methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1987 Dec;31(12):1982–1988. doi: 10.1128/aac.31.12.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Chambers H. F. In vitro and in vivo antistaphylococcal activities of L-695,256, a carbapenem with high affinity for the penicillin-binding protein PBP 2a. Antimicrob Agents Chemother. 1995 Feb;39(2):462–466. doi: 10.1128/aac.39.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Chambers H. F., Kartalija M., Sande M. Ampicillin, sulbactam, and rifampin combination treatment of experimental methicillin-resistant Staphylococcus aureus endocarditis in rabbits. J Infect Dis. 1995 Apr;171(4):897–902. doi: 10.1093/infdis/171.4.897. [DOI] [PubMed] [Google Scholar]
  19. Chambers H. F., Sachdeva M. J., Hackbarth C. J. Kinetics of penicillin binding to penicillin-binding proteins of Staphylococcus aureus. Biochem J. 1994 Jul 1;301(Pt 1):139–144. doi: 10.1042/bj3010139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Chambers H. F., Sachdeva M. Binding of beta-lactam antibiotics to penicillin-binding proteins in methicillin-resistant Staphylococcus aureus. J Infect Dis. 1990 Jun;161(6):1170–1176. doi: 10.1093/infdis/161.6.1170. [DOI] [PubMed] [Google Scholar]
  21. Cohen S., Gibson C. J., Sweeney H. M. Phenotypic suppression of methicillin resistance in Staphylococcus aureus by mutant noninducible penicillinase plasmids. J Bacteriol. 1972 Nov;112(2):682–689. doi: 10.1128/jb.112.2.682-689.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Coles N. W., Gross R. Liberation of surface-located penicillinase from Staphylococcus aureus. Biochem J. 1967 Mar;102(3):742–747. doi: 10.1042/bj1020742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Cox R. A., Mallaghan C., Conquest C., King J. Epidemic methicillin-resistant Staphylococcus aureus: controlling the spread outside hospital. J Hosp Infect. 1995 Feb;29(2):107–119. doi: 10.1016/0195-6701(95)90192-2. [DOI] [PubMed] [Google Scholar]
  24. Crossley K., Loesch D., Landesman B., Mead K., Chern M., Strate R. An outbreak of infections caused by strains of Staphylococcus aureus resistant to methicillin and aminoglycosides. I. Clinical studies. J Infect Dis. 1979 Mar;139(3):273–279. doi: 10.1093/infdis/139.3.273. [DOI] [PubMed] [Google Scholar]
  25. Doebbeling B. N. The epidemiology of methicillin-resistant Staphylococcus aureus colonisation and infection. J Chemother. 1995 Jul;7 (Suppl 3):99–103. [PubMed] [Google Scholar]
  26. Dubin D. T., Matthews P. R., Chikramane S. G., Stewart P. R. Physical mapping of the mec region of an American methicillin-resistant Staphylococcus aureus strain. Antimicrob Agents Chemother. 1991 Aug;35(8):1661–1665. doi: 10.1128/aac.35.8.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dworkin R. J., Lee B. L., Sande M. A., Chambers H. F. Treatment of right-sided Staphylococcus aureus endocarditis in intravenous drug users with ciprofloxacin and rifampicin. Lancet. 1989 Nov 4;2(8671):1071–1073. doi: 10.1016/s0140-6736(89)91083-0. [DOI] [PubMed] [Google Scholar]
  28. Entenza J. M., Drugeon H., Glauser M. P., Moreillon P. Treatment of experimental endocarditis due to erythromycin-susceptible or -resistant methicillin-resistant Staphylococcus aureus with RP 59500. Antimicrob Agents Chemother. 1995 Jul;39(7):1419–1424. doi: 10.1128/aac.39.7.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Fantin B., Leclercq R., Merlé Y., Saint-Julien L., Veyrat C., Duval J., Carbon C. Critical influence of resistance to streptogramin B-type antibiotics on activity of RP 59500 (quinupristin-dalfopristin) in experimental endocarditis due to Staphylococcus aureus. Antimicrob Agents Chemother. 1995 Feb;39(2):400–405. doi: 10.1128/aac.39.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Faville R. J., Jr, Zaske D. E., Kaplan E. L., Crossley K., Sabath L. D., Quie P. G. Staphylococcus aureus endocarditis. Combined therapy with vancomycin and rifampin. JAMA. 1978 Oct 27;240(18):1963–1965. doi: 10.1001/jama.240.18.1963. [DOI] [PubMed] [Google Scholar]
  31. Ferrero L., Cameron B., Crouzet J. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 1995 Jul;39(7):1554–1558. doi: 10.1128/aac.39.7.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ford C. W., Hamel J. C., Stapert D., Moerman J. K., Hutchinson D. K., Barbachyn M. R., Zurenko G. E. Oxazolidinones: new antibacterial agents. Trends Microbiol. 1997 May;5(5):196–200. doi: 10.1016/S0966-842X(97)01032-9. [DOI] [PubMed] [Google Scholar]
  33. Franciolli M., Bille J., Glauser M. P., Moreillon P. Beta-lactam resistance mechanisms of methicillin-resistant Staphylococcus aureus. J Infect Dis. 1991 Mar;163(3):514–523. doi: 10.1093/infdis/163.3.514. [DOI] [PubMed] [Google Scholar]
  34. Georgopapadakou N. H., Dix B. A., Mauriz Y. R. Possible physiological functions of penicillin-binding proteins in Staphylococcus aureus. Antimicrob Agents Chemother. 1986 Feb;29(2):333–336. doi: 10.1128/aac.29.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Georgopapadakou N. H., Liu F. Y. Binding of beta-lactam antibiotics to penicillin-binding proteins of Staphylococcus aureus and Streptococcus faecalis: relation to antibacterial activity. Antimicrob Agents Chemother. 1980 Nov;18(5):834–836. doi: 10.1128/aac.18.5.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Gerberding J. L., Miick C., Liu H. H., Chambers H. F. Comparison of conventional susceptibility tests with direct detection of penicillin-binding protein 2a in borderline oxacillin-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother. 1991 Dec;35(12):2574–2579. doi: 10.1128/aac.35.12.2574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ghuysen J. M. Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol. 1994 Oct;2(10):372–380. doi: 10.1016/0966-842x(94)90614-9. [DOI] [PubMed] [Google Scholar]
  38. Graninger W., Leitha T., Breyer S., Francesconi M., Lenz K., Georgopoulos A. Methicillin- and gentamicin-resistant Staphylococcus aureus: susceptibility to fosfomycin, cefamandole, N-formimidoyl-thienamycin, clindamycin, fusidic acid and vancomycin. Drugs Exp Clin Res. 1985;11(1):23–27. [PubMed] [Google Scholar]
  39. Greenberg R. N., Kennedy D. J., Reilly P. M., Luppen K. L., Weinandt W. J., Bollinger M. R., Aguirre F., Kodesch F., Saeed A. M. Treatment of bone, joint, and soft-tissue infections with oral ciprofloxacin. Antimicrob Agents Chemother. 1987 Feb;31(2):151–155. doi: 10.1128/aac.31.2.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Guillemin M. N., Miles H. M., McDonald M. I. Activity of coumermycin against clinical isolates of staphylococci. Antimicrob Agents Chemother. 1986 Apr;29(4):608–610. doi: 10.1128/aac.29.4.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Gustafson J. E., Berger-Bächi B., Strässle A., Wilkinson B. J. Autolysis of methicillin-resistant and -susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 1992 Mar;36(3):566–572. doi: 10.1128/aac.36.3.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Gustafson J. E., Wilkinson B. J. Lower autolytic activity in a homogeneous methicillin-resistant Staphylococcus aureus strain compared to derived heterogeneous-resistant and susceptible strains. FEMS Microbiol Lett. 1989 May;50(1-2):107–111. doi: 10.1016/0378-1097(89)90468-0. [DOI] [PubMed] [Google Scholar]
  43. Gustafson J., Strässle A., Hächler H., Kayser F. H., Berger-Bächi B. The femC locus of Staphylococcus aureus required for methicillin resistance includes the glutamine synthetase operon. J Bacteriol. 1994 Mar;176(5):1460–1467. doi: 10.1128/jb.176.5.1460-1467.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Hackbarth C. J., Chambers H. F., Sande M. A. Serum bactericidal activity of rifampin in combination with other antimicrobial agents against Staphylococcus aureus. Antimicrob Agents Chemother. 1986 Apr;29(4):611–613. doi: 10.1128/aac.29.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Hackbarth C. J., Chambers H. F. blaI and blaR1 regulate beta-lactamase and PBP 2a production in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1993 May;37(5):1144–1149. doi: 10.1128/aac.37.5.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Hackbarth C. J., Kocagoz T., Kocagoz S., Chambers H. F. Point mutations in Staphylococcus aureus PBP 2 gene affect penicillin-binding kinetics and are associated with resistance. Antimicrob Agents Chemother. 1995 Jan;39(1):103–106. doi: 10.1128/aac.39.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Hackbarth C. J., Miick C., Chambers H. F. Altered production of penicillin-binding protein 2a can affect phenotypic expression of methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1994 Nov;38(11):2568–2571. doi: 10.1128/aac.38.11.2568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Hanaki H., Akagi H., Masaru Y., Otani T., Hyodo A., Hiramatsu K. TOC-39, a novel parenteral broad-spectrum cephalosporin with excellent activity against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1995 May;39(5):1120–1126. doi: 10.1128/aac.39.5.1120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Hartman B. J., Tomasz A. Expression of methicillin resistance in heterogeneous strains of Staphylococcus aureus. Antimicrob Agents Chemother. 1986 Jan;29(1):85–92. doi: 10.1128/aac.29.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Hartman B. J., Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol. 1984 May;158(2):513–516. doi: 10.1128/jb.158.2.513-516.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Heldman A. W., Hartert T. V., Ray S. C., Daoud E. G., Kowalski T. E., Pompili V. J., Sisson S. D., Tidmore W. C., vom Eigen K. A., Goodman S. N. Oral antibiotic treatment of right-sided staphylococcal endocarditis in injection drug users: prospective randomized comparison with parenteral therapy. Am J Med. 1996 Jul;101(1):68–76. doi: 10.1016/s0002-9343(96)00070-8. [DOI] [PubMed] [Google Scholar]
  52. Henze U. U., Berger-Bächi B. Penicillin-binding protein 4 overproduction increases beta-lactam resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1996 Sep;40(9):2121–2125. doi: 10.1128/aac.40.9.2121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Henze U., Sidow T., Wecke J., Labischinski H., Berger-Bächi B. Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. J Bacteriol. 1993 Mar;175(6):1612–1620. doi: 10.1128/jb.175.6.1612-1620.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Hiramatsu K., Asada K., Suzuki E., Okonogi K., Yokota T. Molecular cloning and nucleotide sequence determination of the regulator region of mecA gene in methicillin-resistant Staphylococcus aureus (MRSA). FEBS Lett. 1992 Feb 24;298(2-3):133–136. doi: 10.1016/0014-5793(92)80039-j. [DOI] [PubMed] [Google Scholar]
  55. Hiramatsu K., Kihara H., Yokota T. Analysis of borderline-resistant strains of methicillin-resistant Staphylococcus aureus using polymerase chain reaction. Microbiol Immunol. 1992;36(5):445–453. doi: 10.1111/j.1348-0421.1992.tb02043.x. [DOI] [PubMed] [Google Scholar]
  56. Hiramatsu K. Molecular evolution of MRSA. Microbiol Immunol. 1995;39(8):531–543. doi: 10.1111/j.1348-0421.1995.tb02239.x. [DOI] [PubMed] [Google Scholar]
  57. Hiramatsu K., Suzuki E., Takayama H., Katayama Y., Yokota T. Role of penicillinase plasmids in the stability of the mecA gene in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1990 Apr;34(4):600–604. doi: 10.1128/aac.34.4.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Hirano L., Bayer A. S. Beta-Lactam-beta-lactamase-inhibitor combinations are active in experimental endocarditis caused by beta-lactamase-producing oxacillin-resistant staphylococci. Antimicrob Agents Chemother. 1991 Apr;35(4):685–690. doi: 10.1128/aac.35.4.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Hürlimann-Dalel R. L., Ryffel C., Kayser F. H., Berger-Bächi B. Survey of the methicillin resistance-associated genes mecA, mecR1-mecI, and femA-femB in clinical isolates of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1992 Dec;36(12):2617–2621. doi: 10.1128/aac.36.12.2617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Jones R. N., Barrett M. S., Erwin M. E. In vitro activity and spectrum of LY333328, a novel glycopeptide derivative. Antimicrob Agents Chemother. 1997 Feb;41(2):488–493. doi: 10.1128/aac.41.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Kaatz G. W., Seo S. M., Barriere S. L., Albrecht L. M., Rybak M. J. Ciprofloxacin and rifampin, alone and in combination, for therapy of experimental Staphylococcus aureus endocarditis. Antimicrob Agents Chemother. 1989 Aug;33(8):1184–1187. doi: 10.1128/aac.33.8.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Kaatz G. W., Seo S. M., Dorman N. J., Lerner S. A. Emergence of teicoplanin resistance during therapy of Staphylococcus aureus endocarditis. J Infect Dis. 1990 Jul;162(1):103–108. doi: 10.1093/infdis/162.1.103. [DOI] [PubMed] [Google Scholar]
  63. Kang S. L., Rybak M. J., McGrath B. J., Kaatz G. W., Seo S. M. Pharmacodynamics of levofloxacin, ofloxacin, and ciprofloxacin, alone and in combination with rifampin, against methicillin-susceptible and -resistant Staphylococcus aureus in an in vitro infection model. Antimicrob Agents Chemother. 1994 Dec;38(12):2702–2709. doi: 10.1128/aac.38.12.2702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Kernodle D. S., Stratton C. W., McMurray L. W., Chipley J. R., McGraw P. A. Differentiation of beta-lactamase variants of Staphylococcus aureus by substrate hydrolysis profiles. J Infect Dis. 1989 Jan;159(1):103–108. doi: 10.1093/infdis/159.1.103. [DOI] [PubMed] [Google Scholar]
  65. Kim T. K., Chipley J. R. Effect of salts on penicillinase release by Staphylococcus aureus. Microbios. 1974 Jun-Jul;10A SUPPL(41):55–63. [PubMed] [Google Scholar]
  66. Klimek J. J., Marsik F. J., Bartlett R. C., Weir B., Shea P., Quintiliani R. Clinical, epidemiologic and bacteriologic observations of an outbreak of methicillin-resistant Staphylococcus aureus at a large community hospital. Am J Med. 1976 Sep;61(3):340–345. doi: 10.1016/0002-9343(76)90370-3. [DOI] [PubMed] [Google Scholar]
  67. Knapp C. C., Ludwig M. D., Washington J. A., Chambers H. F. Evaluation of Vitek GPS-SA card for testing of oxacillin against borderline-susceptible staphylococci that lack mec. J Clin Microbiol. 1996 Jul;34(7):1603–1605. doi: 10.1128/jcm.34.7.1603-1605.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Knapp C. C., Ludwig M. D., Washington J. A. Evaluation of BBL crystal MRSA ID system. J Clin Microbiol. 1994 Oct;32(10):2588–2589. doi: 10.1128/jcm.32.10.2588-2589.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Kreiswirth B., Kornblum J., Arbeit R. D., Eisner W., Maslow J. N., McGeer A., Low D. E., Novick R. P. Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. Science. 1993 Jan 8;259(5092):227–230. doi: 10.1126/science.8093647. [DOI] [PubMed] [Google Scholar]
  70. Kuhl S. A., Pattee P. A., Baldwin J. N. Chromosomal map location of the methicillin resistance determinant in Staphylococcus aureus. J Bacteriol. 1978 Aug;135(2):460–465. doi: 10.1128/jb.135.2.460-465.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Kuwahara-Arai K., Kondo N., Hori S., Tateda-Suzuki E., Hiramatsu K. Suppression of methicillin resistance in a mecA-containing pre-methicillin-resistant Staphylococcus aureus strain is caused by the mecI-mediated repression of PBP 2' production. Antimicrob Agents Chemother. 1996 Dec;40(12):2680–2685. doi: 10.1128/aac.40.12.2680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Levine D. P., Cushing R. D., Jui J., Brown W. J. Community-acquired methicillin-resistant Staphylococcus aureus endocarditis in the Detroit Medical Center. Ann Intern Med. 1982 Sep;97(3):330–338. doi: 10.7326/0003-4819-97-3-330. [DOI] [PubMed] [Google Scholar]
  73. Levine D. P., Fromm B. S., Reddy B. R. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann Intern Med. 1991 Nov 1;115(9):674–680. doi: 10.7326/0003-4819-115-9-674. [DOI] [PubMed] [Google Scholar]
  74. Levitz R. E., Quintiliani R. Trimethoprim-sulfamethoxazole for bacterial meningitis. Ann Intern Med. 1984 Jun;100(6):881–890. doi: 10.7326/0003-4819-100-6-881. [DOI] [PubMed] [Google Scholar]
  75. Maidhof H., Reinicke B., Blümel P., Berger-Bächi B., Labischinski H. femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. J Bacteriol. 1991 Jun;173(11):3507–3513. doi: 10.1128/jb.173.11.3507-3513.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Maki H., Yamaguchi T., Murakami K. Cloning and characterization of a gene affecting the methicillin resistance level and the autolysis rate in Staphylococcus aureus. J Bacteriol. 1994 Aug;176(16):4993–5000. doi: 10.1128/jb.176.16.4993-5000.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Markowitz N., Quinn E. L., Saravolatz L. D. Trimethoprim-sulfamethoxazole compared with vancomycin for the treatment of Staphylococcus aureus infection. Ann Intern Med. 1992 Sep 1;117(5):390–398. doi: 10.7326/0003-4819-117-5-390. [DOI] [PubMed] [Google Scholar]
  78. Massanari R. M., Donta S. T. The efficacy of rifampin as adjunctive therapy in selected cases of staphylococcal endocarditis. Chest. 1978 Mar;73(3):371–375. doi: 10.1378/chest.73.3.371. [DOI] [PubMed] [Google Scholar]
  79. Massidda O., Montanari M. P., Mingoia M., Varaldo P. E. Cloning and expression of the penicillinase from a borderline methicillin-susceptible Staphylococcus aureus strain in Escherichia coli. FEMS Microbiol Lett. 1994 Jun 15;119(3):263–269. doi: 10.1111/j.1574-6968.1994.tb06899.x. [DOI] [PubMed] [Google Scholar]
  80. Massidda O., Montanari M. P., Varaldo P. E. Evidence for a methicillin-hydrolysing beta-lactamase in Staphylococcus aureus strains with borderline susceptibility to this drug. FEMS Microbiol Lett. 1992 May 1;71(3):223–227. doi: 10.1016/0378-1097(92)90713-x. [DOI] [PubMed] [Google Scholar]
  81. Matsuhashi M., Song M. D., Ishino F., Wachi M., Doi M., Inoue M., Ubukata K., Yamashita N., Konno M. Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to beta-lactam antibiotics in Staphylococcus aureus. J Bacteriol. 1986 Sep;167(3):975–980. doi: 10.1128/jb.167.3.975-980.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Matthews P. R., Reed K. C., Stewart P. R. The cloning of chromosomal DNA associated with methicillin and other resistances in Staphylococcus aureus. J Gen Microbiol. 1987 Jul;133(7):1919–1929. doi: 10.1099/00221287-133-7-1919. [DOI] [PubMed] [Google Scholar]
  83. Matthews P. R., Stewart P. R. Amplification of a section of chromosomal DNA in methicillin-resistant Staphylococcus aureus following growth in high concentrations of methicillin. J Gen Microbiol. 1988 Jun;134(6):1455–1464. doi: 10.1099/00221287-134-6-1455. [DOI] [PubMed] [Google Scholar]
  84. McDonald C. L., Maher W. E., Fass R. J. Revised interpretation of oxacillin MICs for Staphylococcus epidermidis based on mecA detection. Antimicrob Agents Chemother. 1995 Apr;39(4):982–984. doi: 10.1128/aac.39.4.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. McDougal L. K., Thornsberry C. The role of beta-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol. 1986 May;23(5):832–839. doi: 10.1128/jcm.23.5.832-839.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. McMurray L. W., Kernodle D. S., Barg N. L. Characterization of a widespread strain of methicillin-susceptible Staphylococcus aureus associated with nosocomial infections. J Infect Dis. 1990 Sep;162(3):759–762. doi: 10.1093/infdis/162.3.759. [DOI] [PubMed] [Google Scholar]
  87. Miller M. H., Wexler M. A., Steigbigel N. H. Single and combination antibiotic therapy of Staphylococcus aureus experimental endocarditis: emergence of gentamicin-resistant mutants. Antimicrob Agents Chemother. 1978 Sep;14(3):336–343. doi: 10.1128/aac.14.3.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Moreno F., Crisp C., Jorgensen J. H., Patterson J. E. Methicillin-resistant Staphylococcus aureus as a community organism. Clin Infect Dis. 1995 Nov;21(5):1308–1312. doi: 10.1093/clinids/21.5.1308. [DOI] [PubMed] [Google Scholar]
  89. Morton T. M., Johnston J. L., Patterson J., Archer G. L. Characterization of a conjugative staphylococcal mupirocin resistance plasmid. Antimicrob Agents Chemother. 1995 Jun;39(6):1272–1280. doi: 10.1128/aac.39.6.1272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Mulligan M. E., Ruane P. J., Johnston L., Wong P., Wheelock J. P., MacDonald K., Reinhardt J. F., Johnson C. C., Statner B., Blomquist I. Ciprofloxacin for eradication of methicillin-resistant Staphylococcus aureus colonization. Am J Med. 1987 Apr 27;82(4A):215–219. [PubMed] [Google Scholar]
  91. Murakami K., Tomasz A. Involvement of multiple genetic determinants in high-level methicillin resistance in Staphylococcus aureus. J Bacteriol. 1989 Feb;171(2):874–879. doi: 10.1128/jb.171.2.874-879.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Neu H. C. Bacterial resistance to fluoroquinolones. Rev Infect Dis. 1988 Jan-Feb;10 (Suppl 1):S57–S63. doi: 10.1093/clinids/10.supplement_1.s57. [DOI] [PubMed] [Google Scholar]
  93. Ng E. Y., Trucksis M., Hooper D. C. Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus. Antimicrob Agents Chemother. 1996 Aug;40(8):1881–1888. doi: 10.1128/aac.40.8.1881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Nicolau D. P., Freeman C. D., Nightingale C. H., Coe C. J., Quintiliani R. Minocycline versus vancomycin for treatment of experimental endocarditis caused by oxacillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1994 Jul;38(7):1515–1518. doi: 10.1128/aac.38.7.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Niemeyer D. M., Pucci M. J., Thanassi J. A., Sharma V. K., Archer G. L. Role of mecA transcriptional regulation in the phenotypic expression of methicillin resistance in Staphylococcus aureus. J Bacteriol. 1996 Sep;178(18):5464–5471. doi: 10.1128/jb.178.18.5464-5471.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Noble W. C., Virani Z., Cree R. G. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett. 1992 Jun 1;72(2):195–198. doi: 10.1016/0378-1097(92)90528-v. [DOI] [PubMed] [Google Scholar]
  97. Novak S. M., Hindler J., Bruckner D. A. Reliability of two novel methods, Alamar and E test, for detection of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 1993 Nov;31(11):3056–3057. doi: 10.1128/jcm.31.11.3056-3057.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Ornelas-Soares A., de Lencastre H., de Jonge B. L., Tomasz A. Reduced methicillin resistance in a new Staphylococcus aureus transposon mutant that incorporates muramyl dipeptides into the cell wall peptidoglycan. J Biol Chem. 1994 Nov 4;269(44):27246–27250. [PubMed] [Google Scholar]
  99. Píriz Durán S., Kayser F. H., Berger-Bächi B. Impact of sar and agr on methicillin resistance in Staphylococcus aureus. FEMS Microbiol Lett. 1996 Aug 1;141(2-3):255–260. doi: 10.1111/j.1574-6968.1996.tb08394.x. [DOI] [PubMed] [Google Scholar]
  100. Qoronfleh M. W., Wilkinson B. J. Effects of growth of methicillin-resistant and -susceptible Staphylococcus aureus in the presence of beta-lactams on peptidoglycan structure and susceptibility to lytic enzymes. Antimicrob Agents Chemother. 1986 Feb;29(2):250–257. doi: 10.1128/aac.29.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Ryffel C., Kayser F. H., Berger-Bächi B. Correlation between regulation of mecA transcription and expression of methicillin resistance in staphylococci. Antimicrob Agents Chemother. 1992 Jan;36(1):25–31. doi: 10.1128/aac.36.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Ryffel C., Strässle A., Kayser F. H., Berger-Bächi B. Mechanisms of heteroresistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1994 Apr;38(4):724–728. doi: 10.1128/aac.38.4.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. STEWART G. T., HOLT R. J. Evolutio of natural resistance to the newer penicillins. Br Med J. 1963 Feb 2;1(5326):308–311. doi: 10.1136/bmj.1.5326.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Sanders C. C., Sanders W. E., Jr, Thomson K. S. Fluoroquinolone resistance in staphylococci: new challenges. Eur J Clin Microbiol Infect Dis. 1995;14 (Suppl 1):S6–11. [PubMed] [Google Scholar]
  105. Saravolatz L. D., Pohlod D. J., Arking L. M. Community-acquired methicillin-resistant Staphylococcus aureus infections: a new source for nosocomial outbreaks. Ann Intern Med. 1982 Sep;97(3):325–329. doi: 10.7326/0003-4819-97-3-325. [DOI] [PubMed] [Google Scholar]
  106. Schaefler S. Methicillin-resistant strains of Staphylococcus aureus resistant to quinolones. J Clin Microbiol. 1989 Feb;27(2):335–336. doi: 10.1128/jcm.27.2.335-336.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Schwalbe R. S., Stapleton J. T., Gilligan P. H. Emergence of vancomycin resistance in coagulase-negative staphylococci. N Engl J Med. 1987 Apr 9;316(15):927–931. doi: 10.1056/NEJM198704093161507. [DOI] [PubMed] [Google Scholar]
  108. Seligman S. J. Penicillinase-negative variants of methicillin-resistant Staphylococcus aureus. Nature. 1966 Mar 5;209(5027):994–996. doi: 10.1038/209994a0. [DOI] [PubMed] [Google Scholar]
  109. Skinner S., Inglis B., Matthews P. R., Stewart P. R. Mercury and tetracycline resistance genes and flanking repeats associated with methicillin resistance on the chromosome of Staphylococcus aureus. Mol Microbiol. 1988 Mar;2(2):289–292. doi: 10.1111/j.1365-2958.1988.tb00030.x. [DOI] [PubMed] [Google Scholar]
  110. Song M. D., Wachi M., Doi M., Ishino F., Matsuhashi M. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett. 1987 Aug 31;221(1):167–171. doi: 10.1016/0014-5793(87)80373-3. [DOI] [PubMed] [Google Scholar]
  111. Stewart P. R., Dubin D. T., Chikramane S. G., Inglis B., Matthews P. R., Poston S. M. IS257 and small plasmid insertions in the mec region of the chromosome of Staphylococcus aureus. Plasmid. 1994 Jan;31(1):12–20. doi: 10.1006/plas.1994.1002. [DOI] [PubMed] [Google Scholar]
  112. Strandén A. M., Ehlert K., Labischinski H., Berger-Bächi B. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J Bacteriol. 1997 Jan;179(1):9–16. doi: 10.1128/jb.179.1.9-16.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Sumita Y., Nouda H., Kanazawa K., Fukasawa M. Antimicrobial activity of SM-17466, a novel carbapenem antibiotic with potent activity against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1995 Apr;39(4):910–916. doi: 10.1128/aac.39.4.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Suzuki E., Hiramatsu K., Yokota T. Survey of methicillin-resistant clinical strains of coagulase-negative staphylococci for mecA gene distribution. Antimicrob Agents Chemother. 1992 Feb;36(2):429–434. doi: 10.1128/aac.36.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Suzuki E., Kuwahara-Arai K., Richardson J. F., Hiramatsu K. Distribution of mec regulator genes in methicillin-resistant Staphylococcus clinical strains. Antimicrob Agents Chemother. 1993 Jun;37(6):1219–1226. doi: 10.1128/aac.37.6.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Tesch W., Ryffel C., Strässle A., Kayser F. H., Berger-Bächi B. Evidence of a novel staphylococcal mec-encoded element (mecR) controlling expression of penicillin-binding protein 2'. Antimicrob Agents Chemother. 1990 Sep;34(9):1703–1706. doi: 10.1128/aac.34.9.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Thauvin-Eliopoulos C., Rice L. B., Eliopoulos G. M., Moellering R. C., Jr Efficacy of oxacillin and ampicillin-sulbactam combination in experimental endocarditis caused by beta-lactamase-hyperproducing Staphylococcus aureus. Antimicrob Agents Chemother. 1990 May;34(5):728–732. doi: 10.1128/aac.34.5.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Thornsberry C., McDougal L. K. Successful use of broth microdilution in susceptibility tests for methicillin-resistant (heteroresistant) staphylococci. J Clin Microbiol. 1983 Nov;18(5):1084–1091. doi: 10.1128/jcm.18.5.1084-1091.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Tokue Y., Shoji S., Satoh K., Watanabe A., Motomiya M. Comparison of a polymerase chain reaction assay and a conventional microbiologic method for detection of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1992 Jan;36(1):6–9. doi: 10.1128/aac.36.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Tomasz A., Drugeon H. B., de Lencastre H. M., Jabes D., McDougall L., Bille J. New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob Agents Chemother. 1989 Nov;33(11):1869–1874. doi: 10.1128/aac.33.11.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Trees D. L., Iandolo J. J. Identification of a Staphylococcus aureus transposon (Tn4291) that carries the methicillin resistance gene(s). J Bacteriol. 1988 Jan;170(1):149–154. doi: 10.1128/jb.170.1.149-154.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Ubukata K., Nonoguchi R., Matsuhashi M., Konno M. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. J Bacteriol. 1989 May;171(5):2882–2885. doi: 10.1128/jb.171.5.2882-2885.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Ubukata K., Nonoguchi R., Song M. D., Matsuhashi M., Konno M. Homology of mecA gene in methicillin-resistant Staphylococcus haemolyticus and Staphylococcus simulans to that of Staphylococcus aureus. Antimicrob Agents Chemother. 1990 Jan;34(1):170–172. doi: 10.1128/aac.34.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Unal S., Werner K., DeGirolami P., Barsanti F., Eliopoulos G. Comparison of tests for detection of methicillin-resistant Staphylococcus aureus in a clinical microbiology laboratory. Antimicrob Agents Chemother. 1994 Feb;38(2):345–347. doi: 10.1128/aac.38.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Utsui Y., Yokota T. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1985 Sep;28(3):397–403. doi: 10.1128/aac.28.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Van der Auwera P., Meunier-Carpentier F., Klastersky J. Clinical study of combination therapy with oxacillin and rifampin for staphylococcal infections. Rev Infect Dis. 1983 Jul-Aug;5 (Suppl 3):S515–S522. doi: 10.1093/clinids/5.supplement_3.s515. [DOI] [PubMed] [Google Scholar]
  127. Walsh C. T. Vancomycin resistance: decoding the molecular logic. Science. 1993 Jul 16;261(5119):308–309. doi: 10.1126/science.8392747. [DOI] [PubMed] [Google Scholar]
  128. Walsh T. J., Auger F., Tatem B. A., Hansen S. L., Standiford H. C. Novobiocin and rifampicin in combination against methicillin-resistant Staphylococcus aureus: an in-vitro comparison with vancomycin plus rifampicin. J Antimicrob Chemother. 1986 Jan;17(1):75–82. doi: 10.1093/jac/17.1.75. [DOI] [PubMed] [Google Scholar]
  129. Watanakunakorn C., Tisone J. C. Synergism between vancomycin and gentamicin or tobramycin for methicillin-susceptible and methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother. 1982 Nov;22(5):903–905. doi: 10.1128/aac.22.5.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Waxman D. J., Strominger J. L. Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu Rev Biochem. 1983;52:825–869. doi: 10.1146/annurev.bi.52.070183.004141. [DOI] [PubMed] [Google Scholar]
  131. Whitener C., Caputo G. M., Weitekamp M. R., Karchmer A. W. Endocarditis due to coagulase-negative staphylococci. Microbiologic, epidemiologic, and clinical considerations. Infect Dis Clin North Am. 1993 Mar;7(1):81–96. [PubMed] [Google Scholar]
  132. Woods G. L., Hall G. S., Rutherford I., Pratt K. J., Knapp C. C. Detection of methicillin-resistant Staphylococcus epidermidis. J Clin Microbiol. 1986 Sep;24(3):349–352. doi: 10.1128/jcm.24.3.349-352.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Wu C. Y., Alborn W. E., Jr, Flokowitsch J. E., Hoskins J., Unal S., Blaszczak L. C., Preston D. A., Skatrud P. L. Site-directed mutagenesis of the mecA gene from a methicillin-resistant strain of Staphylococcus aureus. J Bacteriol. 1994 Jan;176(2):443–449. doi: 10.1128/jb.176.2.443-449.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Wu C. Y., Hoskins J., Blaszczak L. C., Preston D. A., Skatrud P. L. Construction of a water-soluble form of penicillin-binding protein 2a from a methicillin-resistant Staphylococcus aureus isolate. Antimicrob Agents Chemother. 1992 Mar;36(3):533–539. doi: 10.1128/aac.36.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Wu S., Piscitelli C., de Lencastre H., Tomasz A. Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb Drug Resist. 1996 Winter;2(4):435–441. doi: 10.1089/mdr.1996.2.435. [DOI] [PubMed] [Google Scholar]
  136. York M. K., Gibbs L., Chehab F., Brooks G. F. Comparison of PCR detection of mecA with standard susceptibility testing methods to determine methicillin resistance in coagulase-negative staphylococci. J Clin Microbiol. 1996 Feb;34(2):249–253. doi: 10.1128/jcm.34.2.249-253.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Yuk J. H., Dignani M. C., Harris R. L., Bradshaw M. W., Williams T. W., Jr Minocycline as an alternative antistaphylococcal agent. Rev Infect Dis. 1991 Sep-Oct;13(5):1023–1024. doi: 10.1093/clinids/13.5.1023. [DOI] [PubMed] [Google Scholar]
  138. de Górgolas M., Avilés P., Verdejo C., Fernández Guerrero M. L. Treatment of experimental endocarditis due to methicillin-susceptible or methicillin-resistant Staphylococcus aureus with trimethoprim-sulfamethoxazole and antibiotics that inhibit cell wall synthesis. Antimicrob Agents Chemother. 1995 Apr;39(4):953–957. doi: 10.1128/aac.39.4.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. de Jonge B. L., Chang Y. S., Gage D., Tomasz A. Peptidoglycan composition in heterogeneous Tn551 mutants of a methicillin-resistant Staphylococcus aureus strain. J Biol Chem. 1992 Jun 5;267(16):11255–11259. [PubMed] [Google Scholar]
  140. de Jonge B. L., Chang Y. S., Gage D., Tomasz A. Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J Biol Chem. 1992 Jun 5;267(16):11248–11254. [PubMed] [Google Scholar]
  141. de Jonge B. L., Sidow T., Chang Y. S., Labischinski H., Berger-Bachi B., Gage D. A., Tomasz A. Altered muropeptide composition in Staphylococcus aureus strains with an inactivated femA locus. J Bacteriol. 1993 May;175(9):2779–2782. doi: 10.1128/jb.175.9.2779-2782.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. de Lencastre H., Tomasz A. Reassessment of the number of auxiliary genes essential for expression of high-level methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1994 Nov;38(11):2590–2598. doi: 10.1128/aac.38.11.2590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. de Lencastre H., de Jonge B. L., Matthews P. R., Tomasz A. Molecular aspects of methicillin resistance in Staphylococcus aureus. J Antimicrob Chemother. 1994 Jan;33(1):7–24. doi: 10.1093/jac/33.1.7. [DOI] [PubMed] [Google Scholar]

Articles from Clinical Microbiology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES