Abstract
OBJECTIVE—To compare coronary flow reserve in endurance athletes and healthy sedentary controls, using adenosine transthoracic echocardiography. METHODS—29 male endurance athletes (mean (SD) age 27.3 (6.6) years, body mass index (BMI) 22.1 (1.9) kg/m2) and 23 male controls (age 27.2 (6.1) years, BMI 23.9 (2.6) kg/m2) with no coronary risk factors underwent transthoracic echocardiographic assessment of distal left anterior descending coronary artery (LAD) diameter and flow, both at rest and during intravenous adenosine infusion (140 µg/kg/min). RESULTS—Distal LAD diameter and flow were adequately assessed in 19 controls (83%) and 26 athletes (90%). Distal LAD diameter in athletes (2.04 (0.25) mm) was not significantly greater than in sedentary controls (1.97 (0.27) mm). Per cent increase in LAD diameter following 400 µg sublingual nitrate was greater in the athletes than in the controls, at 14.1 (7.2)% v 8.8 (5.7)% (p < 0.01). Left ventricular mass index in athletes exceeded that of controls, at 130 (19) v 98 (14) g/m2 (p < 0.01). Resting flow among the athletes (10.6 (3.1) ml/min; 4.4 (1.2) ml/min/100 g left ventricular mass) was less than in the controls (14.3 (3.6) ml/min; 8.2 (2.2) ml/min/100 g left ventricular mass) (both p < 0.01). Hyperaemic flow among the athletes (61.9 (17.8) ml/min) exceeded that of the controls (51.1 (14.6) ml/min; p = 0.02), but not when corrected for left ventricular mass (25.9 (5.6) v 28.5 (7.4) ml/min/100 g left ventricular mass; NS). Coronary flow reserve was therefore substantially greater in the athletes than in the controls, at 5.9 (1.0) v 3.7 (0.7) (p < 0.01). CONCLUSIONS—Coronary flow reserve in endurance athletes is supranormal and endothelium independent vasodilatation is enhanced. Myocardial hypertrophy per se does not necessarily impair coronary flow reserve. Adenosine transthoracic echocardiography is a promising technique for the investigation of coronary flow reserve. Keywords: coronary flow reserve; athlete; adenosine transthoracic echocardiography
Full Text
The Full Text of this article is available as a PDF (190.0 KB).
Figure 1 .
A low left parasternal short axis section through the left ventricle. The distal left anterior descending coronary artery is identified as a circular radiolucency with increased circumferential opacification lying in the anterior interventricular sulcus, barely 3 cm from the chest wall. IVS, interventricular septum; LAD, left anterior descending coronary artery; LV, left ventricle; RV, right ventricle.
Figure 2 .
(A) Low left parasternal long axis window. Resting distal left anterior descending coronary artery (LAD) flow is visualised as a thin red diastolic flame once low velocity reject and frame rate are minimised. (B) Spectral Doppler display of resting flow in the distal LAD in an endurance athlete. HR, heart rate; PDV, peak diastolic velocity; PSV, peak systolic velocity; VTI, velocity-time integral.
Figure 3 .
(A) Magnified colour flow mapping of hyperaemic distal left anterior descending coronary artery (LAD) flow. (B) Spectral Doppler trace of hyperaemic distal LAD blood flow (note scale alteration). HR, heart rate; PDV, peak diastolic velocity; PSV, peak systolic velocity; VTI, velocity-time integral.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alyono D., Anderson R. W., Parrish D. G., Dai X. Z., Bache R. J. Alterations of myocardial blood flow associated with experimental canine left ventricular hypertrophy secondary to valvular aortic stenosis. Circ Res. 1986 Jan;58(1):47–57. doi: 10.1161/01.res.58.1.47. [DOI] [PubMed] [Google Scholar]
- Breisch E. A., White F. C., Nimmo L. E., McKirnan M. D., Bloor C. M. Exercise-induced cardiac hypertrophy: a correlation of blood flow and microvasculature. J Appl Physiol (1985) 1986 Apr;60(4):1259–1267. doi: 10.1152/jappl.1986.60.4.1259. [DOI] [PubMed] [Google Scholar]
- Brown M. D., Davies M. K., Hudlicka O. The effect of long-term bradycardia on heart microvascular supply and performance. Cell Mol Biol Res. 1994;40(2):137–142. [PubMed] [Google Scholar]
- Brown M. D., Davies M. K., Hudlicka O., Townsend P. Long term bradycardia by electrical pacing: a new method for studying heart rate reduction. Cardiovasc Res. 1994 Dec;28(12):1774–1779. doi: 10.1093/cvr/28.12.1774. [DOI] [PubMed] [Google Scholar]
- Buttrick P. M., Schaible T. F., Scheuer J. Combined effects of hypertension and conditioning on coronary vascular reserve in rats. J Appl Physiol (1985) 1986 Jan;60(1):275–279. doi: 10.1152/jappl.1986.60.1.275. [DOI] [PubMed] [Google Scholar]
- CURRENS J. H., WHITE P. D. Half a century of running. Clinical, physiologic and autopsy findings in the case of Clarence DeMar ("Mr. Marathon"). N Engl J Med. 1961 Nov 16;265:988–993. doi: 10.1056/NEJM196111162652006. [DOI] [PubMed] [Google Scholar]
- Caiati C., Montaldo C., Zedda N., Bina A., Iliceto S. New noninvasive method for coronary flow reserve assessment: contrast-enhanced transthoracic second harmonic echo Doppler. Circulation. 1999 Feb 16;99(6):771–778. doi: 10.1161/01.cir.99.6.771. [DOI] [PubMed] [Google Scholar]
- Camici P., Chiriatti G., Lorenzoni R., Bellina R. C., Gistri R., Italiani G., Parodi O., Salvadori P. A., Nista N., Papi L. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol. 1991 Mar 15;17(4):879–886. doi: 10.1016/0735-1097(91)90869-b. [DOI] [PubMed] [Google Scholar]
- Carey R. A., Santamore W. P., Michele J. J., Bove A. A. Effects of endurance training on coronary resistance in dogs. Med Sci Sports Exerc. 1983;15(5):355–359. [PubMed] [Google Scholar]
- Choudhury L., Rosen S. D., Patel D., Nihoyannopoulos P., Camici P. G. Coronary vasodilator reserve in primary and secondary left ventricular hypertrophy. A study with positron emission tomography. Eur Heart J. 1997 Jan;18(1):108–116. doi: 10.1093/oxfordjournals.eurheartj.a015090. [DOI] [PubMed] [Google Scholar]
- Clarkson P., Montgomery H. E., Mullen M. J., Donald A. E., Powe A. J., Bull T., Jubb M., World M., Deanfield J. E. Exercise training enhances endothelial function in young men. J Am Coll Cardiol. 1999 Apr;33(5):1379–1385. doi: 10.1016/s0735-1097(99)00036-4. [DOI] [PubMed] [Google Scholar]
- Cleary R. M., Ayon D., Moore N. B., DeBoe S. F., Mancini G. B. Tachycardia, contractility and volume loading alter conventional indexes of coronary flow reserve, but not the instantaneous hyperemic flow versus pressure slope index. J Am Coll Cardiol. 1992 Nov 1;20(5):1261–1269. doi: 10.1016/0735-1097(92)90386-2. [DOI] [PubMed] [Google Scholar]
- Cohen M. V. Coronary vascular reserve in the greyhound with left ventricular hypertrophy. Cardiovasc Res. 1986 Mar;20(3):182–194. doi: 10.1093/cvr/20.3.182. [DOI] [PubMed] [Google Scholar]
- Crowley J. J., Shapiro L. M. Noninvasive analysis of coronary artery poststenotic flow characteristics by using transthoracic echocardiography. J Am Soc Echocardiogr. 1998 Jan;11(1):1–9. doi: 10.1016/s0894-7317(98)70113-0. [DOI] [PubMed] [Google Scholar]
- Dayanikli F., Grambow D., Muzik O., Mosca L., Rubenfire M., Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation. 1994 Aug;90(2):808–817. doi: 10.1161/01.cir.90.2.808. [DOI] [PubMed] [Google Scholar]
- Devereux R. B., Lutas E. M., Casale P. N., Kligfield P., Eisenberg R. R., Hammond I. W., Miller D. H., Reis G., Alderman M. H., Laragh J. H. Standardization of M-mode echocardiographic left ventricular anatomic measurements. J Am Coll Cardiol. 1984 Dec;4(6):1222–1230. doi: 10.1016/s0735-1097(84)80141-2. [DOI] [PubMed] [Google Scholar]
- Devereux R. B., Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation. 1977 Apr;55(4):613–618. doi: 10.1161/01.cir.55.4.613. [DOI] [PubMed] [Google Scholar]
- DiCarlo S. E., Blair R. W., Bishop V. S., Stone H. L. Daily exercise enhances coronary resistance vessel sensitivity to pharmacological activation. J Appl Physiol (1985) 1989 Jan;66(1):421–428. doi: 10.1152/jappl.1989.66.1.421. [DOI] [PubMed] [Google Scholar]
- Dickhuth H. H., Lehmann M., Auch-Schwelk W., Meinertz T., Keul J. Physical training, vegetative regulation, and cardiac hypertrophy. J Cardiovasc Pharmacol. 1987;10 (Suppl 6):S71–S78. [PubMed] [Google Scholar]
- Doucette J. W., Corl P. D., Payne H. M., Flynn A. E., Goto M., Nassi M., Segal J. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation. 1992 May;85(5):1899–1911. doi: 10.1161/01.cir.85.5.1899. [DOI] [PubMed] [Google Scholar]
- Drexler H., Zeiher A. M., Wollschläger H., Meinertz T., Just H., Bonzel T. Flow-dependent coronary artery dilatation in humans. Circulation. 1989 Sep;80(3):466–474. doi: 10.1161/01.cir.80.3.466. [DOI] [PubMed] [Google Scholar]
- Fusejima K. Noninvasive measurement of coronary artery blood flow using combined two-dimensional and Doppler echocardiography. J Am Coll Cardiol. 1987 Nov;10(5):1024–1031. doi: 10.1016/s0735-1097(87)80342-x. [DOI] [PubMed] [Google Scholar]
- Gould K. L., Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974 Jul;34(1):48–55. doi: 10.1016/0002-9149(74)90092-7. [DOI] [PubMed] [Google Scholar]
- Hambrecht R., Wolf A., Gielen S., Linke A., Hofer J., Erbs S., Schoene N., Schuler G. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000 Feb 17;342(7):454–460. doi: 10.1056/NEJM200002173420702. [DOI] [PubMed] [Google Scholar]
- Haskell W. L., Sims C., Myll J., Bortz W. M., St Goar F. G., Alderman E. L. Coronary artery size and dilating capacity in ultradistance runners. Circulation. 1993 Apr;87(4):1076–1082. doi: 10.1161/01.cir.87.4.1076. [DOI] [PubMed] [Google Scholar]
- Heiss H. W., Barmeyer J., Wink K., Hell G., Cerny F. J., Keul J., Reindell H. Studies on the regulation of myocardial blood flow in man. I.: Training effects on blood flow and metabolism of the healthy heart at rest and during standardized heavy exercise. Basic Res Cardiol. 1976 Nov-Dec;71(6):658–675. doi: 10.1007/BF01906411. [DOI] [PubMed] [Google Scholar]
- Hildick-Smith D. J., Shapiro L. M. Potential use of transthoracic echocardiography in the assessment of coronary flow reserve. J Am Soc Echocardiogr. 1999 Jul;12(7):590–595. doi: 10.1016/s0894-7317(99)70007-6. [DOI] [PubMed] [Google Scholar]
- Hildick-Smith D. J., Shapiro L. M. Transthoracic echocardiographic measurement of coronary artery diameter: validation against quantitative coronary angiography. J Am Soc Echocardiogr. 1998 Sep;11(9):893–897. doi: 10.1016/s0894-7317(98)70009-4. [DOI] [PubMed] [Google Scholar]
- Hongo M., Nakatsuka T., Watanabe N., Takenaka H., Tanaka M., Kinoshita O., Okubo S., Sekiguchi M. Effects of heart rate on phasic coronary blood flow pattern and flow reserve in patients with normal coronary arteries: a study with an intravascular Doppler catheter and spectral analysis. Am Heart J. 1994 Mar;127(3):545–551. doi: 10.1016/0002-8703(94)90661-0. [DOI] [PubMed] [Google Scholar]
- Hozumi T., Yoshida K., Akasaka T., Asami Y., Ogata Y., Takagi T., Kaji S., Kawamoto T., Ueda Y., Morioka S. Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery by Doppler echocardiography: comparison with invasive technique. J Am Coll Cardiol. 1998 Nov;32(5):1251–1259. doi: 10.1016/s0735-1097(98)00389-1. [DOI] [PubMed] [Google Scholar]
- Hozumi T., Yoshida K., Ogata Y., Akasaka T., Asami Y., Takagi T., Morioka S. Noninvasive assessment of significant left anterior descending coronary artery stenosis by coronary flow velocity reserve with transthoracic color Doppler echocardiography. Circulation. 1998 Apr 28;97(16):1557–1562. doi: 10.1161/01.cir.97.16.1557. [DOI] [PubMed] [Google Scholar]
- Hudlická O., Brown M. D., Walter H., Weiss J. B., Bate A. Factors involved in capillary growth in the heart. Mol Cell Biochem. 1995 Jun 7;147(1-2):57–68. doi: 10.1007/BF00944784. [DOI] [PubMed] [Google Scholar]
- Hundley W. G., Lange R. A., Clarke G. D., Meshack B. M., Payne J., Landau C., McColl R., Sayad D. E., Willett D. L., Willard J. E. Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging. Circulation. 1996 Apr 15;93(8):1502–1508. doi: 10.1161/01.cir.93.8.1502. [DOI] [PubMed] [Google Scholar]
- Iliceto S., Marangelli V., Memmola C., Rizzon P. Transesophageal Doppler echocardiography evaluation of coronary blood flow velocity in baseline conditions and during dipyridamole-induced coronary vasodilation. Circulation. 1991 Jan;83(1):61–69. doi: 10.1161/01.cir.83.1.61. [DOI] [PubMed] [Google Scholar]
- Ito N., Isoyama S., Takahashi T., Takishima T. Coronary dilator reserve and morphological changes after relief of pressure-overload in rats. J Mol Cell Cardiol. 1993 Jan;25(1):3–14. doi: 10.1006/jmcc.1993.1002. [DOI] [PubMed] [Google Scholar]
- Jost S., Rafflenbeul W., Reil G. H., Gulba D., Knop I., Hecker H., Lichtlen P. R. Reproducible uniform coronary vasomotor tone with nitrocompounds: prerequisite of quantitative coronary angiographic trials. Cathet Cardiovasc Diagn. 1990 Jul;20(3):168–173. doi: 10.1002/ccd.1810200304. [DOI] [PubMed] [Google Scholar]
- Kenny A., Shapiro L. M. Transthoracic high-frequency two-dimensional echocardiography, Doppler and color flow mapping to determine anatomy and blood flow patterns in the distal left anterior descending coronary artery. Am J Cardiol. 1992 May 15;69(16):1265–1268. doi: 10.1016/0002-9149(92)91218-s. [DOI] [PubMed] [Google Scholar]
- Kern M. J., Deligonul U., Tatineni S., Serota H., Aguirre F., Hilton T. C. Intravenous adenosine: continuous infusion and low dose bolus administration for determination of coronary vasodilator reserve in patients with and without coronary artery disease. J Am Coll Cardiol. 1991 Sep;18(3):718–729. doi: 10.1016/0735-1097(91)90795-b. [DOI] [PubMed] [Google Scholar]
- Krayenbuehl H. P., Hess O. M., Schneider J., Turina M. Physiologic or pathologic hypertrophy. Eur Heart J. 1983 Jan;4 (Suppl A):29–34. doi: 10.1093/eurheartj/4.suppl_a.29. [DOI] [PubMed] [Google Scholar]
- Laughlin M. H., Diana J. N., Tipton C. M. Effects of exercise training on coronary reactive hyperemia and blood flow in the dog. J Appl Physiol Respir Environ Exerc Physiol. 1978 Oct;45(4):604–610. doi: 10.1152/jappl.1978.45.4.604. [DOI] [PubMed] [Google Scholar]
- Laughlin M. H. Effects of exercise training on coronary transport capacity. J Appl Physiol (1985) 1985 Feb;58(2):468–476. doi: 10.1152/jappl.1985.58.2.468. [DOI] [PubMed] [Google Scholar]
- Laughlin M. H., Overholser K. A., Bhatte M. J. Exercise training increases coronary transport reserve in miniature swine. J Appl Physiol (1985) 1989 Sep;67(3):1140–1149. doi: 10.1152/jappl.1989.67.3.1140. [DOI] [PubMed] [Google Scholar]
- Laughlin M. H., Tomanek R. J. Myocardial capillarity and maximal capillary diffusion capacity in exercise-trained dogs. J Appl Physiol (1985) 1987 Oct;63(4):1481–1486. doi: 10.1152/jappl.1987.63.4.1481. [DOI] [PubMed] [Google Scholar]
- Leon A. S., Bloor C. M. Effects of exercise and its cessation on the heart and its blood supply. J Appl Physiol. 1968 Apr;24(4):485–490. doi: 10.1152/jappl.1968.24.4.485. [DOI] [PubMed] [Google Scholar]
- Ljungqvist A., Unge G. Capillary proliferative activity in myocardium and skeletal muscle of exercised rats. J Appl Physiol Respir Environ Exerc Physiol. 1977 Aug;43(2):306–307. doi: 10.1152/jappl.1977.43.2.306. [DOI] [PubMed] [Google Scholar]
- Marcus M. L., Doty D. B., Hiratzka L. F., Wright C. B., Eastham C. L. Decreased coronary reserve: a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N Engl J Med. 1982 Nov 25;307(22):1362–1366. doi: 10.1056/NEJM198211253072202. [DOI] [PubMed] [Google Scholar]
- Marcus M. L., White C. W. Coronary flow reserve in patients with normal coronary angiograms. J Am Coll Cardiol. 1985 Dec;6(6):1254–1256. doi: 10.1016/s0735-1097(85)80210-2. [DOI] [PubMed] [Google Scholar]
- Maron B. J. Structural features of the athlete heart as defined by echocardiography. J Am Coll Cardiol. 1986 Jan;7(1):190–203. doi: 10.1016/s0735-1097(86)80282-0. [DOI] [PubMed] [Google Scholar]
- McGinn A. L., White C. W., Wilson R. F. Interstudy variability of coronary flow reserve. Influence of heart rate, arterial pressure, and ventricular preload. Circulation. 1990 Apr;81(4):1319–1330. doi: 10.1161/01.cir.81.4.1319. [DOI] [PubMed] [Google Scholar]
- Mombouli J. V., Nakashima M., Hamra M., Vanhoutte P. M. Endothelium-dependent relaxation and hyperpolarization evoked by bradykinin in canine coronary arteries: enhancement by exercise-training. Br J Pharmacol. 1996 Feb;117(3):413–418. doi: 10.1111/j.1476-5381.1996.tb15206.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muller J. M., Myers P. R., Laughlin M. H. Vasodilator responses of coronary resistance arteries of exercise-trained pigs. Circulation. 1994 May;89(5):2308–2314. doi: 10.1161/01.cir.89.5.2308. [DOI] [PubMed] [Google Scholar]
- Nitenberg A., Antony I. Coronary vascular reserve in humans: a critical review of methods of evaluation and of interpretation of the results. Eur Heart J. 1995 Aug;16 (Suppl 1):7–21. doi: 10.1093/eurheartj/16.suppl_i.7. [DOI] [PubMed] [Google Scholar]
- Nitenberg A., Foult J. M., Antony I., Blanchet F., Rahali M. Coronary flow and resistance reserve in patients with chronic aortic regurgitation, angina pectoris and normal coronary arteries. J Am Coll Cardiol. 1988 Mar;11(3):478–486. doi: 10.1016/0735-1097(88)91520-3. [DOI] [PubMed] [Google Scholar]
- Oltman C. L., Parker J. L., Adams H. R., Laughlin M. H. Effects of exercise training on vasomotor reactivity of porcine coronary arteries. Am J Physiol. 1992 Aug;263(2 Pt 2):H372–H382. doi: 10.1152/ajpheart.1992.263.2.H372. [DOI] [PubMed] [Google Scholar]
- Opherk D., Mall G., Zebe H., Schwarz F., Weihe E., Manthey J., Kübler W. Reduction of coronary reserve: a mechanism for angina pectoris in patients with arterial hypertension and normal coronary arteries. Circulation. 1984 Jan;69(1):1–7. doi: 10.1161/01.cir.69.1.1. [DOI] [PubMed] [Google Scholar]
- Parker J. L., Oltman C. L., Muller J. M., Myers P. R., Adams H. R., Laughlin M. H. Effects of exercise training on regulation of tone in coronary arteries and arterioles. Med Sci Sports Exerc. 1994 Oct;26(10):1252–1261. [PubMed] [Google Scholar]
- Pelliccia A., Maron B. J., Spataro A., Proschan M. A., Spirito P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med. 1991 Jan 31;324(5):295–301. doi: 10.1056/NEJM199101313240504. [DOI] [PubMed] [Google Scholar]
- Pelliccia A., Spataro A., Granata M., Biffi A., Caselli G., Alabiso A. Coronary arteries in physiological hypertrophy: echocardiographic evidence of increased proximal size in elite athletes. Int J Sports Med. 1990 Apr;11(2):120–126. doi: 10.1055/s-2007-1024775. [DOI] [PubMed] [Google Scholar]
- Pichard A. D., Smith H., Holt J., Meller J., Gorlin R. Coronary vascular reserve in left ventricular hypertrophy secondary to chronic aortic regurgitation. Am J Cardiol. 1983 Jan 15;51(2):315–320. doi: 10.1016/s0002-9149(83)80057-5. [DOI] [PubMed] [Google Scholar]
- Radvan J., Choudhury L., Sheridan D. J., Camici P. G. Comparison of coronary vasodilator reserve in elite rowing athletes versus hypertrophic cardiomyopathy. Am J Cardiol. 1997 Dec 15;80(12):1621–1623. doi: 10.1016/s0002-9149(97)00778-9. [DOI] [PubMed] [Google Scholar]
- Ross J. J., Jr, Mintz G. S., Chandrasekaran K. Transthoracic two-dimensional high frequency (7.5 MHz) ultrasonic visualization of the distal left anterior descending coronary artery. J Am Coll Cardiol. 1990 Feb;15(2):373–377. doi: 10.1016/s0735-1097(10)80065-8. [DOI] [PubMed] [Google Scholar]
- Rossen J. D., Winniford M. D. Effect of increases in heart rate and arterial pressure on coronary flow reserve in humans. J Am Coll Cardiol. 1993 Feb;21(2):343–348. doi: 10.1016/0735-1097(93)90673-o. [DOI] [PubMed] [Google Scholar]
- Sahn D. J., DeMaria A., Kisslo J., Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation. 1978 Dec;58(6):1072–1083. doi: 10.1161/01.cir.58.6.1072. [DOI] [PubMed] [Google Scholar]
- Shapiro L. M. Physiological left ventricular hypertrophy. Br Heart J. 1984 Aug;52(2):130–135. doi: 10.1136/hrt.52.2.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smits P., Lenders J. W., Thien T. Caffeine and theophylline attenuate adenosine-induced vasodilation in humans. Clin Pharmacol Ther. 1990 Oct;48(4):410–418. doi: 10.1038/clpt.1990.169. [DOI] [PubMed] [Google Scholar]
- Sudhir K., MacGregor J. S., Barbant S. D., Foster E., Fitzgerald P. J., Chatterjee K., Yock P. G. Assessment of coronary conductance and resistance vessel reactivity in response to nitroglycerin, ergonovine and adenosine: in vivo studies with simultaneous intravascular two-dimensional and Doppler ultrasound. J Am Coll Cardiol. 1993 Apr;21(5):1261–1268. doi: 10.1016/0735-1097(93)90255-y. [DOI] [PubMed] [Google Scholar]
- Tomanek R. J. Response of the coronary vasculature to myocardial hypertrophy. J Am Coll Cardiol. 1990 Mar 1;15(3):528–533. doi: 10.1016/0735-1097(90)90620-5. [DOI] [PubMed] [Google Scholar]
- Tomanek R. J., Torry R. J. Growth of the coronary vasculature in hypertrophy: mechanisms and model dependence. Cell Mol Biol Res. 1994;40(2):129–136. [PubMed] [Google Scholar]
- Toraa M., Pouillard F., Merlet P., Friemel F. Hypertrophie cardiaque et réserve coronaire chez les athlètes d'endurance. Can J Appl Physiol. 1999 Feb;24(1):87–95. [PubMed] [Google Scholar]
- Villari B., Vassalli G., Monrad E. S., Chiariello M., Turina M., Hess O. M. Normalization of diastolic dysfunction in aortic stenosis late after valve replacement. Circulation. 1995 May 1;91(9):2353–2358. doi: 10.1161/01.cir.91.9.2353. [DOI] [PubMed] [Google Scholar]
- Wang J., Wolin M. S., Hintze T. H. Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res. 1993 Nov;73(5):829–838. doi: 10.1161/01.res.73.5.829. [DOI] [PubMed] [Google Scholar]
- Wilson R. F., Laughlin D. E., Ackell P. H., Chilian W. M., Holida M. D., Hartley C. J., Armstrong M. L., Marcus M. L., White C. W. Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation. 1985 Jul;72(1):82–92. doi: 10.1161/01.cir.72.1.82. [DOI] [PubMed] [Google Scholar]
- Wilson R. F., White C. W. Intracoronary papaverine: an ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation. 1986 Mar;73(3):444–451. doi: 10.1161/01.cir.73.3.444. [DOI] [PubMed] [Google Scholar]
- Wilson R. F., Wyche K., Christensen B. V., Zimmer S., Laxson D. D. Effects of adenosine on human coronary arterial circulation. Circulation. 1990 Nov;82(5):1595–1606. doi: 10.1161/01.cir.82.5.1595. [DOI] [PubMed] [Google Scholar]
- Wyatt H. L., Mitchell J. Influences of physical conditioning and deconditioning on coronary vasculature of dogs. J Appl Physiol Respir Environ Exerc Physiol. 1978 Oct;45(4):619–625. doi: 10.1152/jappl.1978.45.4.619. [DOI] [PubMed] [Google Scholar]
- Zeppilli P., Merlino B., Vannicelli R., La Rosa Gangi M., Santini C., Palmieri V. Coronary arteries and athlete's heart. Arch Mal Coeur Vaiss. 1989 Aug;82(SPEC):89–92. [PubMed] [Google Scholar]