Skip to main content
Heart logoLink to Heart
. 2000 Nov;84(5):529–534. doi: 10.1136/heart.84.5.529

Complex stenosis morphology and vasomotor responses to inhibition of nitric oxide synthesis

D Tousoulis 1, C Tentolouris 1, T Crake 1, G Goumas 1, C Stefanadis 1, P Toutouzas 1, G Davies 1
PMCID: PMC1729469  PMID: 11040015

Abstract

OBJECTIVE—To assess the relation between coronary vasomotor effects of NG-monomethyl-L-arginine (LNMMA) administration and coronary stenosis morphology, length, and severity in patients with stable angina.
DESIGN—In 28 patients (24 male, four female) with coronary artery disease and chronic stable angina, intracoronary normal saline and 4 µmol/min LNMMA were infused for four minutes each, followed by an intracoronary bolus of 250 µg glyceryl trinitrate. Coronary stenoses were classified as concentric (smooth), eccentric (smooth), or complicated (irregular). The diameters of these stenoses and their adjacent reference proximal segments were measured by quantitative angiography.
RESULTS—During LNMMA infusion a significantly larger proportion of complicated stenoses than concentric and eccentric stenoses constricted by ⩾ 5% (p < 0.01) and the magnitude of vasoconstriction was greater in complicated than in concentric and eccentric stenoses (p < 0.05). For complicated stenoses the magnitude of constriction (in mm) with reference to normal saline was greater than that of the concentric and eccentric stenoses (p < 0.05), whereas concentric and eccentric stenoses constricted similarly. Irrespective of the type of morphology, there was a correlation (p < 0.05) between both the severity and the length of stenoses and the magnitude of vasoconstriction to LNMMA. A similar proportion of concentric, eccentric, and complicated stenoses showed ⩾ 5% increase in diameter with glyceryl trinitrate, and the magnitude of the response was similar in the three groups.
CONCLUSIONS—In patients with coronary artery disease, the response to LNMMA is greater when stenosis morphology is complex, indicating greater nitric oxide activity. This provides further evidence that plaques with complex morphology are in an active state.


Keywords: endothelium; nitric oxide; coronary artery disease; stenosis morphology

Full Text

The Full Text of this article is available as a PDF (169.2 KB).

Figure 1  .

Figure 1  

Mean coronary stenosis response (per cent change from baseline) to NG-monomethyl-L-arginine (LNMMA) and glyceryl trinitrate (nitrates) for concentric, eccentric, and complicated stenoses. In response to LNMMA, complicated stenoses showed significantly greater constriction (p < 0.05) than concentric or eccentric stenoses. No differences were found in response to nitrates in these three morphologies.

Figure 2  .

Figure 2  

Individual lumen diameter per cent change from baseline in concentric, eccentric, and complicated stenoses after LNMMA infusion. Horizontal bars indicate the mean values.

Figure 3  .

Figure 3  

The magnitude of stenosis and of reference (ref) segment constriction are expressed as diameter after saline minus diameter after LNMMA (mm) for concentric, eccentric, and complicated stenoses. Complicated stenoses showed significantly greater constriction (p < 0.05) than concentric or eccentric stenoses.

Figure 4  .

Figure 4  

Correlations between stenosis length (right panel), stenosis severity (middle panel), stenosis eccentricity ratio (left panel), and the magnitude of LNMMA response, expressed as per cent change in coronary artery diameter from baseline. Linear regression analysis showed a significant correlation between stenosis severity and LNMMA response, and between stenosis length and LNMMA response.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrose J. A., Winters S. L., Arora R. R., Eng A., Riccio A., Gorlin R., Fuster V. Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol. 1986 Mar;7(3):472–478. doi: 10.1016/s0735-1097(86)80455-7. [DOI] [PubMed] [Google Scholar]
  2. Ambrose J. A., Winters S. L., Arora R. R., Haft J. I., Goldstein J., Rentrop K. P., Gorlin R., Fuster V. Coronary angiographic morphology in myocardial infarction: a link between the pathogenesis of unstable angina and myocardial infarction. J Am Coll Cardiol. 1985 Dec;6(6):1233–1238. doi: 10.1016/s0735-1097(85)80207-2. [DOI] [PubMed] [Google Scholar]
  3. Ashton J. H., Ogletree M. L., Michel I. M., Golino P., McNatt J. M., Taylor A. L., Raheja S., Schmitz J., Buja L. M., Campbell W. B. Cooperative mediation by serotonin S2 and thromboxane A2/prostaglandin H2 receptor activation of cyclic flow variations in dogs with severe coronary artery stenoses. Circulation. 1987 Oct;76(4):952–959. doi: 10.1161/01.cir.76.4.952. [DOI] [PubMed] [Google Scholar]
  4. Berkenboom G., Unger P., Fang Z. Y., Degre S., Fontaine J. Comparison of responses to acetylcholine and serotonin on isolated canine and human coronary arteries. Cardiovasc Res. 1989 Sep;23(9):780–787. doi: 10.1093/cvr/23.9.780. [DOI] [PubMed] [Google Scholar]
  5. Blauw G., Bom A. H., van Brummelen P., Camps J., Arndt J. W., Verdouw P. D., Chang P. C., van Zwieten P. A., Saxena P. R. Effects of 5-hydroxytryptamine on capillary and arteriovenous anastomotic blood flow in the human hand and forearm and in the pig hind leg. J Cardiovasc Pharmacol. 1991 Feb;17(2):316–324. doi: 10.1097/00005344-199102000-00019. [DOI] [PubMed] [Google Scholar]
  6. Buttery L. D., Springall D. R., Chester A. H., Evans T. J., Standfield E. N., Parums D. V., Yacoub M. H., Polak J. M. Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Lab Invest. 1996 Jul;75(1):77–85. [PubMed] [Google Scholar]
  7. Chu A., Chambers D. E., Lin C. C., Kuehl W. D., Cobb F. R. Nitric oxide modulates epicardial coronary basal vasomotor tone in awake dogs. Am J Physiol. 1990 Apr;258(4 Pt 2):H1250–H1254. doi: 10.1152/ajpheart.1990.258.4.H1250. [DOI] [PubMed] [Google Scholar]
  8. Connor H. E., Feniuk W., Humphrey P. P. 5-Hydroxytryptamine contracts human coronary arteries predominantly via 5-HT2 receptor activation. Eur J Pharmacol. 1989 Feb 14;161(1):91–94. doi: 10.1016/0014-2999(89)90184-2. [DOI] [PubMed] [Google Scholar]
  9. Dollery C. M., McEwan J. R., Henney A. M. Matrix metalloproteinases and cardiovascular disease. Circ Res. 1995 Nov;77(5):863–868. doi: 10.1161/01.res.77.5.863. [DOI] [PubMed] [Google Scholar]
  10. Ellis S., Alderman E. L., Cain K., Wright A., Bourassa M., Fisher L. Morphology of left anterior descending coronary territory lesions as a predictor of anterior myocardial infarction: a CASS Registry Study. J Am Coll Cardiol. 1989 Jun;13(7):1481–1491. doi: 10.1016/0735-1097(89)90336-7. [DOI] [PubMed] [Google Scholar]
  11. Esaki T., Hayashi T., Muto E., Yamada K., Kuzuya M., Iguchi A. Expression of inducible nitric oxide synthase in T lymphocytes and macrophages of cholesterol-fed rabbits. Atherosclerosis. 1997 Jan 3;128(1):39–46. doi: 10.1016/s0021-9150(96)05976-x. [DOI] [PubMed] [Google Scholar]
  12. Freedman J. E., Ting B., Hankin B., Loscalzo J., Keaney J. F., Jr, Vita J. A. Impaired platelet production of nitric oxide predicts presence of acute coronary syndromes. Circulation. 1998 Oct 13;98(15):1481–1486. doi: 10.1161/01.cir.98.15.1481. [DOI] [PubMed] [Google Scholar]
  13. Galis Z. S., Sukhova G. K., Lark M. W., Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994 Dec;94(6):2493–2503. doi: 10.1172/JCI117619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griffith T. M., Edwards D. H., Lewis M. J., Newby A. C., Henderson A. H. The nature of endothelium-derived vascular relaxant factor. Nature. 1984 Apr 12;308(5960):645–647. doi: 10.1038/308645a0. [DOI] [PubMed] [Google Scholar]
  15. Hutchinson P. J., Palmer R. M., Moncada S. Comparative pharmacology of EDRF and nitric oxide on vascular strips. Eur J Pharmacol. 1987 Sep 23;141(3):445–451. doi: 10.1016/0014-2999(87)90563-2. [DOI] [PubMed] [Google Scholar]
  16. Ichikawa Y., Yokoyama M., Akita H., Fukuzaki H. Constriction of a large coronary artery contributes to serotonin-induced myocardial ischemia in the dog with pliable coronary stenosis. J Am Coll Cardiol. 1989 Aug;14(2):449–461. doi: 10.1016/0735-1097(89)90201-5. [DOI] [PubMed] [Google Scholar]
  17. Kaski J. C., Chester M. R., Chen L., Katritsis D. Rapid angiographic progression of coronary artery disease in patients with angina pectoris. The role of complex stenosis morphology. Circulation. 1995 Oct 15;92(8):2058–2065. doi: 10.1161/01.cir.92.8.2058. [DOI] [PubMed] [Google Scholar]
  18. Kaski J. C., Tousoulis D., Haider A. W., Gavrielides S., Crea F., Maseri A. Reactivity of eccentric and concentric coronary stenoses in patients with chronic stable angina. J Am Coll Cardiol. 1991 Mar 1;17(3):627–633. doi: 10.1016/s0735-1097(10)80175-5. [DOI] [PubMed] [Google Scholar]
  19. Lefroy D. C., Crake T., Uren N. G., Davies G. J., Maseri A. Effect of inhibition of nitric oxide synthesis on epicardial coronary artery caliber and coronary blood flow in humans. Circulation. 1993 Jul;88(1):43–54. doi: 10.1161/01.cir.88.1.43. [DOI] [PubMed] [Google Scholar]
  20. Libby P., Geng Y. J., Aikawa M., Schoenbeck U., Mach F., Clinton S. K., Sukhova G. K., Lee R. T. Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol. 1996 Oct;7(5):330–335. doi: 10.1097/00041433-199610000-00012. [DOI] [PubMed] [Google Scholar]
  21. Mügge A., Brandes R. P., Böger R. H., Dwenger A., Bode-Böger S., Kienke S., Frölich J. C., Lichtlen P. R. Vascular release of superoxide radicals is enhanced in hypercholesterolemic rabbits. J Cardiovasc Pharmacol. 1994 Dec;24(6):994–998. doi: 10.1097/00005344-199424060-00019. [DOI] [PubMed] [Google Scholar]
  22. Ohara Y., Peterson T. E., Sayegh H. S., Subramanian R. R., Wilcox J. N., Harrison D. G. Dietary correction of hypercholesterolemia in the rabbit normalizes endothelial superoxide anion production. Circulation. 1995 Aug 15;92(4):898–903. doi: 10.1161/01.cir.92.4.898. [DOI] [PubMed] [Google Scholar]
  23. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  24. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  25. Parsons A. A., Whalley E. T., Feniuk W., Connor H. E., Humphrey P. P. 5-HT1-like receptors mediate 5-hydroxytryptamine-induced contraction of human isolated basilar artery. Br J Pharmacol. 1989 Feb;96(2):434–440. doi: 10.1111/j.1476-5381.1989.tb11835.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rees D. D., Palmer R. M., Hodson H. F., Moncada S. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol. 1989 Feb;96(2):418–424. doi: 10.1111/j.1476-5381.1989.tb11833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reiber J. H., Serruys P. W., Kooijman C. J., Wijns W., Slager C. J., Gerbrands J. J., Schuurbiers J. C., den Boer A., Hugenholtz P. G. Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation. 1985 Feb;71(2):280–288. doi: 10.1161/01.cir.71.2.280. [DOI] [PubMed] [Google Scholar]
  28. Rubanyi G. M., Vanhoutte P. M. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol. 1986 May;250(5 Pt 2):H822–H827. doi: 10.1152/ajpheart.1986.250.5.H822. [DOI] [PubMed] [Google Scholar]
  29. Saner H. E., Gobel F. L., Salomonowitz E., Erlien D. A., Edwards J. E. The disease-free wall in coronary atherosclerosis: its relation to degree of obstruction. J Am Coll Cardiol. 1985 Nov;6(5):1096–1099. doi: 10.1016/s0735-1097(85)80314-4. [DOI] [PubMed] [Google Scholar]
  30. Saraste A., Pulkki K., Kallajoki M., Henriksen K., Parvinen M., Voipio-Pulkki L. M. Apoptosis in human acute myocardial infarction. Circulation. 1997 Jan 21;95(2):320–323. doi: 10.1161/01.cir.95.2.320. [DOI] [PubMed] [Google Scholar]
  31. Schönbeck U., Mach F., Sukhova G. K., Murphy C., Bonnefoy J. Y., Fabunmi R. P., Libby P. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? Circ Res. 1997 Sep;81(3):448–454. doi: 10.1161/01.res.81.3.448. [DOI] [PubMed] [Google Scholar]
  32. Shimokawa H., Aarhus L. L., Vanhoutte P. M. Porcine coronary arteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and serotonin. Circ Res. 1987 Aug;61(2):256–270. doi: 10.1161/01.res.61.2.256. [DOI] [PubMed] [Google Scholar]
  33. Tousoulis D., Crake T., Kaski J. C., Rosen S. D., Haider A. W., Davies G. J. Enhanced vasomotor responses of complex coronary stenoses to acetylcholine in stable angina pectoris. Am J Cardiol. 1995 Apr 1;75(10):725–728. doi: 10.1016/s0002-9149(99)80664-x. [DOI] [PubMed] [Google Scholar]
  34. Tousoulis D., Davies G. J., Tentolouris C., Crake T., Lefroy D. C., Toutouzas P. Effects of inhibition of nitric oxide synthesis in patients with coronary artery disease and stable angina. Eur Heart J. 1997 Apr;18(4):608–613. doi: 10.1093/oxfordjournals.eurheartj.a015304. [DOI] [PubMed] [Google Scholar]
  35. Tousoulis D., Davies G., Crake T., Lefroy D. C., Rosen S., Maseri A. Angiographic characteristics of infarct-related and non-infarct-related stenoses in patients in whom stable angina progressed to acute myocardial infarction. Am Heart J. 1998 Sep;136(3):382–388. doi: 10.1016/s0002-8703(98)70210-8. [DOI] [PubMed] [Google Scholar]
  36. Tousoulis D., Davies G., McFadden E., Clarke J., Kaski J. C., Maseri A. Coronary vasomotor effects of serotonin in patients with angina. Relation to coronary stenosis morphology. Circulation. 1993 Oct;88(4 Pt 1):1518–1526. doi: 10.1161/01.cir.88.4.1518. [DOI] [PubMed] [Google Scholar]
  37. Tousoulis D., Davies G., Tentolouris C., Crake T., Toutouzas P. Coronary stenosis dilatation induced by L-arginine. Lancet. 1997 Jun 21;349(9068):1812–1813. doi: 10.1016/S0140-6736(05)61692-3. [DOI] [PubMed] [Google Scholar]
  38. Tousoulis D., Kaski J. C., Davies G., Pereira W., el Tamimi H., McFadden E., Maseri A. Preangioplasty complicated coronary stenosis morphology as a predictor of restenosis. Am Heart J. 1992 Jan;123(1):15–20. doi: 10.1016/0002-8703(92)90741-d. [DOI] [PubMed] [Google Scholar]
  39. Tousoulis D., Tentolouris C., Crake T., Toutouzas P., Davies G. Basal and flow-mediated nitric oxide production by atheromatous coronary arteries. J Am Coll Cardiol. 1997 May;29(6):1256–1262. doi: 10.1016/s0735-1097(97)00046-6. [DOI] [PubMed] [Google Scholar]
  40. Vanhoutte P. M. The endothelium--modulator of vascular smooth-muscle tone. N Engl J Med. 1988 Aug 25;319(8):512–513. doi: 10.1056/NEJM198808253190809. [DOI] [PubMed] [Google Scholar]
  41. Waller B. F. The eccentric coronary atherosclerotic plaque: morphologic observations and clinical relevance. Clin Cardiol. 1989 Jan;12(1):14–20. doi: 10.1002/clc.4960120103. [DOI] [PubMed] [Google Scholar]
  42. Woodman O. L., Dusting G. J. N-nitro L-arginine causes coronary vasoconstriction and inhibits endothelium-dependent vasodilatation in anaesthetized greyhounds. Br J Pharmacol. 1991 Jun;103(2):1407–1410. doi: 10.1111/j.1476-5381.1991.tb09802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES