Skip to main content
Heart logoLink to Heart
. 2001 Feb;85(2):165–170. doi: 10.1136/heart.85.2.165

Prediction of contractile reserve by cyclic variation of integrated backscatter of the myocardium in patients with chronic left ventricular dysfunction

T Muro 1, T Ota 1, H Watanabe 1, M Teragaki 1, K Takeuchi 1, J Yoshikawa 1
PMCID: PMC1729606  PMID: 11156666

Abstract

OBJECTIVE—To clarify whether assessment of the acoustic properties of the myocardium at rest can predict contractile reserve in patients with chronic left ventricular dysfunction.
METHODS—23 patients (mean (SD) age 63 (12) years) with chronic left ventricular dysfunction were studied. The magnitude of cardiac cycle dependent variation of integrated backscatter (CVIB) of the myocardium was measured at rest in the basal and mid segment of the septum and posterior wall of the left ventricle, using a real time two dimensional integrated backscatter imaging system. The results were compared with the percentage wall thickening and the wall motion at rest and during low dose dobutamine infusion. The wall motion was graded as normal, hypokinetic, or akinetic and contractile reserve was considered present when an akinetic or hypokinetic segment improved during dobutamine infusion.
RESULTS—The CVIB at rest correlated with per cent wall thickening at rest and during dobutamine infusion (at rest, r = 0.61, p < 0.0001, during dobutamine, r = 0.76, p < 0.0001). Of the 76 segments examined, 27 showed contractile reserve. The mean CVIB at rest was significantly greater in segments with contractile reserve than in those without (p < 0.0001). CVIB above 3 dB at rest predicted segments with contractile reserve with a sensitivity and specificity of 81% and 60%, respectively (p < 0.0001).
CONCLUSIONS—CVIB reflected not only myocardial contractility but also the functional capacity of the myocardium. It predicted segmental contractile reserve in patients with chronic left ventricular dysfunction.


Keywords: contractile reserve; acoustic properties of myocardium; cyclic variation of integrated backscatter; left ventricular dysfunction

Full Text

The Full Text of this article is available as a PDF (149.9 KB).

Figure 1  .

Figure 1  

Two dimensional (cross sectional) integrated backscatter imaging interfaced with acoustic densitometry. Parasternal long axis integrated backscatter images were stored in digital format. An elliptical region of interest was placed in the mid myocardium of the mid or basal myocardial segment of the interventricular septum and posterior wall.

Figure 2  .

Figure 2  

Individual values of per cent wall thickening (%WT) (A) and magnitude of cardiac cycle dependent variation of integrated backscatter of the myocardium (CVIB) (B) for segments with contractile reserve (CR+) and those without (CR−). There was a weak but significant difference in %WT at rest between segments with and without contractile reserve. The magnitude of CVIB was significantly greater in segments with contractile reserve that in those without.

Figure 3  .

Figure 3  

Scatterplot showing the correlation between the magnitude of cardiac cycle dependent variation of integrated backscatter at rest and systolic wall thickening at rest (A) and that during dobutamine infusion (B).

Figure 4  .

Figure 4  

Representative curves of cyclic variation of integrated backscatter in a segment with contractile reserve (A) and a segment without contractile reserve (B). Cyclic variation shows a synchronous pattern in the segment with contractile reserve, but an asynchronous pattern in the segment without.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baer F. M., Theissen P., Schneider C. A., Voth E., Sechtem U., Schicha H., Erdmann E. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol. 1998 Apr;31(5):1040–1048. doi: 10.1016/s0735-1097(98)00032-1. [DOI] [PubMed] [Google Scholar]
  2. Barzilai B., Thomas L. J., 3rd, Glueck R. M., Saffitz J. E., Vered Z., Sobel B. E., Miller J. G., Pérez J. E. Detection of remote myocardial infarction with quantitative real-time ultrasonic characterization. J Am Soc Echocardiogr. 1988 May-Jun;1(3):179–186. doi: 10.1016/s0894-7317(88)80073-7. [DOI] [PubMed] [Google Scholar]
  3. Bonow R. O., Dilsizian V., Cuocolo A., Bacharach S. L. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation. 1991 Jan;83(1):26–37. doi: 10.1161/01.cir.83.1.26. [DOI] [PubMed] [Google Scholar]
  4. Bristow M. R., Ginsburg R., Minobe W., Cubicciotti R. S., Sageman W. S., Lurie K., Billingham M. E., Harrison D. C., Stinson E. B. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982 Jul 22;307(4):205–211. doi: 10.1056/NEJM198207223070401. [DOI] [PubMed] [Google Scholar]
  5. Colonna P., Montisci R., Galiuto L., Meloni L., Iliceto S. Effects of acute myocardial ischemia on intramyocardial contraction heterogeneity: A study performed with ultrasound integrated backscatter during transesophageal atrial pacing. Circulation. 1999 Oct 26;100(17):1770–1776. doi: 10.1161/01.cir.100.17.1770. [DOI] [PubMed] [Google Scholar]
  6. Dubois-Randé J. L., Merlet P., Roudot F., Benvenuti C., Adnot S., Hittinger L., Duval A. M., Syrota A., Castaigne A., Loisance D. Beta-adrenergic contractile reserve as a predictor of clinical outcome in patients with idiopathic dilated cardiomyopathy. Am Heart J. 1992 Sep;124(3):679–685. doi: 10.1016/0002-8703(92)90278-4. [DOI] [PubMed] [Google Scholar]
  7. Elsässer A., Müller K. D., Vogt A., Strasser R., Gagel C., Schlepper M., Klövekorn W. P. Assessment of myocardial viability: Dobutamine echocardiography and thallium-201 single-photon emission computed tomographic imaging predict the postoperative improvement of left ventricular function after bypass surgery. Am Heart J. 1998 Mar;135(3):463–475. doi: 10.1016/s0002-8703(98)70323-0. [DOI] [PubMed] [Google Scholar]
  8. Feinberg M. S., Gussak H. M., Dávila-Román V. G., Baumann C. M., Miller J. G., Pérez J. E. Dissociation between wall thickening of normal myocardium and cyclic variation of backscatter during inotropic stimulation. Am J Cardiol. 1996 Mar 1;77(7):515–520. doi: 10.1016/s0002-9149(97)89347-2. [DOI] [PubMed] [Google Scholar]
  9. Fowler M. B., Laser J. A., Hopkins G. L., Minobe W., Bristow M. R. Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation. 1986 Dec;74(6):1290–1302. doi: 10.1161/01.cir.74.6.1290. [DOI] [PubMed] [Google Scholar]
  10. Glueck R. M., Mottley J. G., Miller J. G., Sobel B. E., Pérez J. E. Effects of coronary artery occlusion and reperfusion on cardiac cycle-dependent variation of myocardial ultrasonic backscatter. Circ Res. 1985 May;56(5):683–689. doi: 10.1161/01.res.56.5.683. [DOI] [PubMed] [Google Scholar]
  11. Gould K. L. Myocardial viability. What does it mean and how do we measure it? Circulation. 1991 Jan;83(1):333–335. doi: 10.1161/01.cir.83.1.333. [DOI] [PubMed] [Google Scholar]
  12. Holland M. R., Finch-Johnston A. E., Wallace K. D., Handley S. M., Wilkenshoff U. M., Pérez J. E., Miller J. G. Effects of tissue anisotropy and contrast acoustic properties on myocardial scattering in contrast echocardiography. J Am Soc Echocardiogr. 1999 Jul;12(7):564–573. doi: 10.1016/s0894-7317(99)70004-0. [DOI] [PubMed] [Google Scholar]
  13. Holland M. R., Wilkenshoff U. M., Finch-Johnston A. E., Handley S. M., Perez J. E., Miller J. G. Effects of myocardial fiber orientation in echocardiography: quantitative measurements and computer simulation of the regional dependence of backscattered ultrasound in the parasternal short-axis view. J Am Soc Echocardiogr. 1998 Oct;11(10):929–937. doi: 10.1016/s0894-7317(98)70134-8. [DOI] [PubMed] [Google Scholar]
  14. Iliceto S., Galiuto L., Colonna P., Napoli V. F., Rizzon P. Effects of atrial pacing stress test on ultrasonic integrated backscatter cyclic variations in normal subjects and in patients with coronary artery disease. Eur Heart J. 1997 Oct;18(10):1590–1598. doi: 10.1093/oxfordjournals.eurheartj.a015138. [DOI] [PubMed] [Google Scholar]
  15. Masuyama T., Nellessen U., Schnittger I., Tye T. L., Haskell W. L., Popp R. L. Ultrasonic tissue characterization with a real time integrated backscatter imaging system in normal and aging human hearts. J Am Coll Cardiol. 1989 Dec;14(7):1702–1708. doi: 10.1016/0735-1097(89)90019-3. [DOI] [PubMed] [Google Scholar]
  16. Masuyama T., St Goar F. G., Tye T. L., Oppenheim G., Schnittger I., Popp R. L. Ultrasonic tissue characterization of human hypertrophied hearts in vivo with cardiac cycle-dependent variation in integrated backscatter. Circulation. 1989 Oct;80(4):925–934. doi: 10.1161/01.cir.80.4.925. [DOI] [PubMed] [Google Scholar]
  17. Masuyama T., Valantine H. A., Gibbons R., Schnittger I., Popp R. L. Serial measurement of integrated ultrasonic backscatter in human cardiac allografts for the recognition of acute rejection. Circulation. 1990 Mar;81(3):829–839. doi: 10.1161/01.cir.81.3.829. [DOI] [PubMed] [Google Scholar]
  18. Milunski M. R., Mohr G. A., Pérez J. E., Vered Z., Wear K. A., Gessler C. J., Sobel B. E., Miller J. G., Wickline S. A. Ultrasonic tissue characterization with integrated backscatter. Acute myocardial ischemia, reperfusion, and stunned myocardium in patients. Circulation. 1989 Sep;80(3):491–503. doi: 10.1161/01.cir.80.3.491. [DOI] [PubMed] [Google Scholar]
  19. Milunski M. R., Mohr G. A., Wear K. A., Sobel B. E., Miller J. G., Wickline S. A. Early identification with ultrasonic integrated backscatter of viable but stunned myocardium in dogs. J Am Coll Cardiol. 1989 Aug;14(2):462–471. doi: 10.1016/0735-1097(89)90203-9. [DOI] [PubMed] [Google Scholar]
  20. Mottley J. G., Glueck R. M., Perez J. E., Sobel B. E., Miller J. G. Regional differences in the cyclic variation of myocardial backscatter that parallel regional differences in contractile performance. J Acoust Soc Am. 1984 Dec;76(6):1617–1623. doi: 10.1121/1.391608. [DOI] [PubMed] [Google Scholar]
  21. Mélon P. G., de Landsheere C. M., Degueldre C., Peters J. L., Kulbertus H. E., Piérard L. A. Relation between contractile reserve and positron emission tomographic patterns of perfusion and glucose utilization in chronic ischemic left ventricular dysfunction: implications for identification of myocardial viability. J Am Coll Cardiol. 1997 Dec;30(7):1651–1659. doi: 10.1016/s0735-1097(97)00373-2. [DOI] [PubMed] [Google Scholar]
  22. Nagaoka H., Isobe N., Kubota S., Iizuka T., Imai S., Suzuki T., Nagai R. Myocardial contractile reserve as prognostic determinant in patients with idiopathic dilated cardiomyopathy without overt heart failure. Chest. 1997 Feb;111(2):344–350. doi: 10.1378/chest.111.2.344. [DOI] [PubMed] [Google Scholar]
  23. Naito J., Masuyama T., Mano T., Kondo H., Doi Y., Yamamoto K., Nagano R., Hori M., Inoue M., Kamada T. Dobutamine stress ultrasonic myocardial tissue characterization in patients with dilated cardiomyopathy. J Am Soc Echocardiogr. 1996 Jul-Aug;9(4):470–479. doi: 10.1016/s0894-7317(96)90118-2. [DOI] [PubMed] [Google Scholar]
  24. Ota T., Craig D. M., Kisslo J. Influences of ultrasonic machine settings, transducer frequency and placement of region of interest on the measurement of integrated backscatter and cyclic variation. Ultrasound Med Biol. 1997;23(7):1059–1070. doi: 10.1016/s0301-5629(97)00117-8. [DOI] [PubMed] [Google Scholar]
  25. Pasquet A., D'Hondt A. M., Melin J. A., Vanoverschelde J. L. Relation of ultrasonic tissue characterization with integrated backscatter to contractile reserve in chronic left ventricular ischemic dysfunction. Am J Cardiol. 1998 Jan 1;81(1):68–74. doi: 10.1016/s0002-9149(97)00861-8. [DOI] [PubMed] [Google Scholar]
  26. Piérard L. A., De Landsheere C. M., Berthe C., Rigo P., Kulbertus H. E. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol. 1990 Apr;15(5):1021–1031. doi: 10.1016/0735-1097(90)90236-i. [DOI] [PubMed] [Google Scholar]
  27. Popio K. A., Gorlin R., Bechtel D., Levine J. A. Postextrasystolic potentiation as a predictor of potential myocardial viability: preoperative analyses compared with studies after coronary bypass surgery. Am J Cardiol. 1977 Jun;39(7):944–953. doi: 10.1016/s0002-9149(77)80206-3. [DOI] [PubMed] [Google Scholar]
  28. Pérez J. E., McGill J. B., Santiago J. V., Schechtman K. B., Waggoner A. D., Miller J. G., Sobel B. E. Abnormal myocardial acoustic properties in diabetic patients and their correlation with the severity of disease. J Am Coll Cardiol. 1992 May;19(6):1154–1162. doi: 10.1016/0735-1097(92)90316-f. [DOI] [PubMed] [Google Scholar]
  29. Qureshi U., Nagueh S. F., Afridi I., Vaduganathan P., Blaustein A., Verani M. S., Winters W. L., Jr, Zoghbi W. A. Dobutamine echocardiography and quantitative rest-redistribution 201Tl tomography in myocardial hibernation. Relation of contractile reserve to 201Tl uptake and comparative prediction of recovery of function. Circulation. 1997 Feb 4;95(3):626–635. doi: 10.1161/01.cir.95.3.626. [DOI] [PubMed] [Google Scholar]
  30. Sagar K. B., Pelc L. E., Rhyne T. L., Wann L. S., Waltier D. C. Influence of heart rate, preload, afterload, and inotropic state on myocardial ultrasonic backscatter. Circulation. 1988 Feb;77(2):478–483. doi: 10.1161/01.cir.77.2.478. [DOI] [PubMed] [Google Scholar]
  31. Takiuchi S., Ito H., Iwakura K., Taniyama Y., Nishikawa N., Masuyama T., Hori M., Higashino Y., Fujii K., Minamino T. Ultrasonic tissue characterization predicts myocardial viability in early stage of reperfused acute myocardial infarction. Circulation. 1998 Feb 3;97(4):356–362. doi: 10.1161/01.cir.97.4.356. [DOI] [PubMed] [Google Scholar]
  32. Vered Z., Barzilai B., Mohr G. A., Thomas L. J., 3rd, Genton R., Sobel B. E., Shoup T. A., Melton H. E., Miller J. G., Pérez J. E. Quantitative ultrasonic tissue characterization with real-time integrated backscatter imaging in normal human subjects and in patients with dilated cardiomyopathy. Circulation. 1987 Nov;76(5):1067–1073. doi: 10.1161/01.cir.76.5.1067. [DOI] [PubMed] [Google Scholar]
  33. Vered Z., Mohr G. A., Barzilai B., Gessler C. J., Jr, Wickline S. A., Wear K. A., Shoup T. A., Weiss A. N., Sobel B. E., Miller J. G. Ultrasound integrated backscatter tissue characterization of remote myocardial infarction in human subjects. J Am Coll Cardiol. 1989 Jan;13(1):84–91. doi: 10.1016/0735-1097(89)90553-6. [DOI] [PubMed] [Google Scholar]
  34. Vered Z., Mohr G. A., Barzilai B., Gessler C. J., Jr, Wickline S. A., Wear K. A., Shoup T. A., Weiss A. N., Sobel B. E., Miller J. G. Ultrasound integrated backscatter tissue characterization of remote myocardial infarction in human subjects. J Am Coll Cardiol. 1989 Jan;13(1):84–91. doi: 10.1016/0735-1097(89)90553-6. [DOI] [PubMed] [Google Scholar]
  35. Vitale D. F., Bonow R. O., Gerundo G., Pelaggi N., Lauria G., Leosco D., Coltorti F., Bordini C., Rengo C., Rengo F. Alterations in ultrasonic backscatter during exercise-induced myocardial ischemia in humans. Circulation. 1995 Sep 15;92(6):1452–1457. doi: 10.1161/01.cir.92.6.1452. [DOI] [PubMed] [Google Scholar]
  36. Wickline S. A., Thomas L. J., 3rd, Miller J. G., Sobel B. E., Perez J. E. A relationship between ultrasonic integrated backscatter and myocardial contractile function. J Clin Invest. 1985 Dec;76(6):2151–2160. doi: 10.1172/JCI112221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wickline S. A., Thomas L. J., 3rd, Miller J. G., Sobel B. E., Perez J. E. Sensitive detection of the effects of reperfusion on myocardium by ultrasonic tissue characterization with integrated backscatter. Circulation. 1986 Aug;74(2):389–400. doi: 10.1161/01.cir.74.2.389. [DOI] [PubMed] [Google Scholar]
  38. Wickline S. A., Thomas L. J., 3rd, Miller J. G., Sobel B. E., Pérez J. E. The dependence of myocardial ultrasonic integrated backscatter on contractile performance. Circulation. 1985 Jul;72(1):183–192. doi: 10.1161/01.cir.72.1.183. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES