Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jan;63(1):99–103. doi: 10.1128/iai.63.1.99-103.1995

Analysis of immunization route-related variation in the immune response to heat-killed Salmonella typhimurium in mice.

J Thatte 1, S Rath 1, V Bal 1
PMCID: PMC172963  PMID: 7806391

Abstract

In examinations of the factors regulating the quality and quantity of the immune response to Salmonella typhimurium, we have shown previously that live and heat-killed preparations of S. typhimurium can induce gamma interferon-dominant and interleukin-4-dominant immune responses, respectively, upon intraperitoneal (i.p.) immunization of BALB/c mice. Using this system to investigate the role of the route of immunization in the immune response, we show in the present study that i.p. immunization with heat-killed S. typhimurium generates a quantitatively better immune response than does intradermal (i.d.) immunization. The quantitative differences observed between the i.p. and i.d. routes are apparent in the amount of S. typhimurium-specific antibodies produced, the extent of responses in T-cell proliferation assays, and the quantities of lymphokines generated. However, the ratios of immunoglobulin (Ig) isotypes [IgG1/IgG2a] are comparable and the relative dominance of interleukin-4 over gamma interferon is seen in both i.p.- and i.d.-immunized mice, suggesting that the predominant T-cell effector pathways triggered are not qualitatively dependent on the route of immunization. An examination of the antigenic profile recognised by the B-cell and T-cell responses in i.p.- versus i.d.-immunized mice shows that while the Western immunoblot patterns recognized by serum antibodies from the two groups of mice were not significantly different, T cells from i.p.-immunized mice recognized a broader spectrum of antigens in an immunoblot assay than did those from i.d.-immunized mice. These data suggest that there may be a significant difference in the antigen-processing ability of peritoneal and dermal antigen-presenting cells for complex antigenic formulations such as bacterial vaccines.

Full Text

The Full Text of this article is available as a PDF (226.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown A., Hormaeche C. E., Demarco de Hormaeche R., Winther M., Dougan G., Maskell D. J., Stocker B. A. An attenuated aroA Salmonella typhimurium vaccine elicits humoral and cellular immunity to cloned beta-galactosidase in mice. J Infect Dis. 1987 Jan;155(1):86–92. doi: 10.1093/infdis/155.1.86. [DOI] [PubMed] [Google Scholar]
  2. Finkelman F. D., Holmes J., Katona I. M., Urban J. F., Jr, Beckmann M. P., Park L. S., Schooley K. A., Coffman R. L., Mosmann T. R., Paul W. E. Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol. 1990;8:303–333. doi: 10.1146/annurev.iy.08.040190.001511. [DOI] [PubMed] [Google Scholar]
  3. George A., Shroff K. E., Rath S., Ghosh S. N., Sengupta S. R., Kamat R. S. Route-related variation in the immunogenicity of killed Salmonella enteritidis vaccine: role of antigen presenting cells. Microbiol Immunol. 1989;33(6):479–488. doi: 10.1111/j.1348-0421.1989.tb01997.x. [DOI] [PubMed] [Google Scholar]
  4. Gieni R. S., Yang X., HayGlass K. T. Allergen-specific modulation of cytokine synthesis patterns and IgE responses in vivo with chemically modified allergen. J Immunol. 1993 Jan 1;150(1):302–310. [PubMed] [Google Scholar]
  5. Kaye P. M., Curry A. J., Blackwell J. M. Differential production of Th1- and Th2-derived cytokines does not determine the genetically controlled or vaccine-induced rate of cure in murine visceral leishmaniasis. J Immunol. 1991 Apr 15;146(8):2763–2770. [PubMed] [Google Scholar]
  6. Levin D., Constant S., Pasqualini T., Flavell R., Bottomly K. Role of dendritic cells in the priming of CD4+ T lymphocytes to peptide antigen in vivo. J Immunol. 1993 Dec 15;151(12):6742–6750. [PubMed] [Google Scholar]
  7. Pearce E. J., Caspar P., Grzych J. M., Lewis F. A., Sher A. Downregulation of Th1 cytokine production accompanies induction of Th2 responses by a parasitic helminth, Schistosoma mansoni. J Exp Med. 1991 Jan 1;173(1):159–166. doi: 10.1084/jem.173.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pfeiffer C., Murray J., Madri J., Bottomly K. Selective activation of Th1- and Th2-like cells in vivo--response to human collagen IV. Immunol Rev. 1991 Oct;123:65–84. doi: 10.1111/j.1600-065x.1991.tb00606.x. [DOI] [PubMed] [Google Scholar]
  9. Poirier T. P., Kehoe M. A., Beachey E. H. Protective immunity evoked by oral administration of attenuated aroA Salmonella typhimurium expressing cloned streptococcal M protein. J Exp Med. 1988 Jul 1;168(1):25–32. doi: 10.1084/jem.168.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Puré E., Inaba K., Crowley M. T., Tardelli L., Witmer-Pack M. D., Ruberti G., Fathman G., Steinman R. M. Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain. J Exp Med. 1990 Nov 1;172(5):1459–1469. doi: 10.1084/jem.172.5.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Romani L., Mocci S., Bietta C., Lanfaloni L., Puccetti P., Bistoni F. Th1 and Th2 cytokine secretion patterns in murine candidiasis: association of Th1 responses with acquired resistance. Infect Immun. 1991 Dec;59(12):4647–4654. doi: 10.1128/iai.59.12.4647-4654.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sadoff J. C., Ballou W. R., Baron L. S., Majarian W. R., Brey R. N., Hockmeyer W. T., Young J. F., Cryz S. J., Ou J., Lowell G. H. Oral Salmonella typhimurium vaccine expressing circumsporozoite protein protects against malaria. Science. 1988 Apr 15;240(4850):336–338. doi: 10.1126/science.3281260. [DOI] [PubMed] [Google Scholar]
  13. Scott P., Kaufmann S. H. The role of T-cell subsets and cytokines in the regulation of infection. Immunol Today. 1991 Oct;12(10):346–348. doi: 10.1016/0167-5699(91)90063-Y. [DOI] [PubMed] [Google Scholar]
  14. Scott P., Natovitz P., Coffman R. L., Pearce E., Sher A. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J Exp Med. 1988 Nov 1;168(5):1675–1684. doi: 10.1084/jem.168.5.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shroff K. E., Sengupta S. R., Kamat R. S. Route-related variation in immunogenicity of mycobacteria. Int J Lepr Other Mycobact Dis. 1990 Mar;58(1):44–49. [PubMed] [Google Scholar]
  16. Snapper C. M., Paul W. E. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science. 1987 May 22;236(4804):944–947. doi: 10.1126/science.3107127. [DOI] [PubMed] [Google Scholar]
  17. Thatte J., Rath S., Bal V. Immunization with live versus killed Salmonella typhimurium leads to the generation of an IFN-gamma-dominant versus an IL-4-dominant immune response. Int Immunol. 1993 Nov;5(11):1431–1436. doi: 10.1093/intimm/5.11.1431. [DOI] [PubMed] [Google Scholar]
  18. Titus R. G., Müller I., Kimsey P., Cerny A., Behin R., Zinkernagel R. M., Louis J. A. Exacerbation of experimental murine cutaneous leishmaniasis with CD4+ Leishmania major-specific T cell lines or clones which secrete interferon-gamma and mediate parasite-specific delayed-type hypersensitivity. Eur J Immunol. 1991 Mar;21(3):559–567. doi: 10.1002/eji.1830210305. [DOI] [PubMed] [Google Scholar]
  19. Young D. B., Lamb J. R. T lymphocytes respond to solid-phase antigen: a novel approach to the molecular analysis of cellular immunity. Immunology. 1986 Oct;59(2):167–171. [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES