Skip to main content
Heart logoLink to Heart
. 2001 Mar;85(3):278–285. doi: 10.1136/heart.85.3.278

Assessment of coronary reperfusion in patients with myocardial infarction using fatty acid binding protein concentrations in plasma

M J M de Groot 1, A Muijtjens 1, M Simoons 1, W Hermens 1, J Glatz 1
PMCID: PMC1729633  PMID: 11179265

Abstract

OBJECTIVE—To examine whether successful coronary reperfusion after thrombolytic treatment in patients with confirmed acute myocardial infarction can be diagnosed from the plasma marker fatty acid binding protein (FABP), for either acute clinical decision making or retrospective purposes.
DESIGN—Retrospective substudy of the GUSTO trial.
SETTING—10 hospitals in four European countries.
PATIENTS—115 patients were treated with thrombolytic agents within six hours after the onset of acute myocardial infarction. Patency of the infarct related artery was determined by angiography within 120 minutes of the start of thrombolysis.
MAIN OUTCOME MEASURES—First hour rate of increase in plasma FABP concentration after thrombolytic treatment, compared with increase in plasma myoglobin concentration and creatine kinase isoenzyme MB (CK-MB) activity. Infarct size was estimated from the cumulative release of the enzyme α hydroxybutyrate dehydrogenase in plasma during 72 hours, or from the sum of ST segment elevations on admission. Logistic regression analyses were performed to construct predictive models for patency.
RESULTS—Complete reperfusion (TIMI 3) occurred in 50 patients, partial reperfusion (TIMI 2) in 36, and no reperfusion (TIMI 0+1) in 29. Receiver operating characteristic (ROC) curve analyses showed that the best performance of FABP was obtained when TIMI scores 2 and 3 were grouped and compared with TIMI score 0+1. The performance of FABP as a reperfusion marker was improved by combining it with α hydroxybutyrate dehydrogenase infarct size, but not with an early surrogate of infarct size (ST segment elevation on admission). In combination with infarct size FABP performed as well as myoglobin (areas under the ROC curve 0.868 and 0.857, respectively) and better than CK-MB (area = 0.796). At optimum cut off levels, positive predictive values were 97% for FABP, 95% for myoglobin, and 89% for CK-MB (without infarct size, 87%, 88%, and 87%, respectively), and negative predictive values were 55%, 52%, and 50%, respectively (without infarct size, 44%, 42%, and 34%).
CONCLUSIONS—FABP and myoglobin perform equally well as reperfusion markers, and successful reperfusion can be assessed, with positive predictive values of 87% and 88%, or even 97% and 95% when infarct size is also taken into account. However, identification of non-reperfused patients remains a problem, as negative predictive values will generally remain below 70%.


Keywords: myocardial reperfusion; cardiac marker proteins

Full Text

The Full Text of this article is available as a PDF (152.7 KB).

Figure 1  .

Figure 1  

The first hour increase in plasma fatty acid binding protein (FABP) release in patients with TIMI grade 0 (n = 23), TIMI 1 (n = 6), TIMI 2 (n = 36), and TIMI 3 (n = 50). In the TIMI 0+1, TIMI 2, and TIMI 3 patients the mean (SEM) increases were 50 (11), 283 (53), and 232 (45) µg/l/h.

Figure 2  .

Figure 2  

(A) Receiver operating characteristic (ROC) curves (sensitivity v 1 − specificity) for the first hour increase of fatty acid binding protein (FABP) release, comparing TIMI grade 3 v TIMI 0+1+2 (empty triangles), TIMI 3 v TIMI 0+1 (filled circles), and TIMI 2+3 v TIMI 0+1 (empty squares). (B) ROC curves of the first hour increase rate of FABP (filled circles), the first hour increase rate of FABP and QHBDH72 (empty squares), and the first hour increase rate of FABP plus the sum of ST segment elevations (empty triangles), for TIMI 2+3 v TIMI 0+1. QHBDH72, cumulative release of α hydroxybutyrate dehydrogenase into plasma in the first 72 hours.

Figure 3  .

Figure 3  

Comparison of fatty acid binding protein (FABP) with myoglobin (MYO) and creatine kinase MB isoenzyme (CK-MB). (A) Receiver operating characteristic (ROC) curves (sensitivity v 1 − specificity) of the first hour increase in release of FABP (empty squares), myoglobin (filled circles), or CK-MB (empty triangles), for TIMI grades 2+3 v TIMI 0+1. (B) ROC curves combining the first hour increase in release of FABP (empty squares), myoglobin (filled circles), or CK-MB (empty triangles) with QHBDH72, for TIMI 2+3 v TIMI 0+1.

Figure 4  .

Figure 4  

Scatterplots of infarct size estimated from the sum of ST segment elevations in the admission ECG and from cumulative release of α hydroxybutyrate dehydrogenase during 72 hours (QHBDH72). The best fit straight line (drawn) is shown.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe S., Arima S., Nomoto K., Maruyama I., Miyata M., Yamaguchi H., Okino H., Yamashita T., Atsuchi Y., Tahara M. Early detection of coronary reperfusion by rapid assessment of plasma myoglobin. Int J Cardiol. 1993 Jan;38(1):33–40. doi: 10.1016/0167-5273(93)90201-q. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. L., Karagounis L. A., Becker L. C., Sorensen S. G., Menlove R. L. TIMI perfusion grade 3 but not grade 2 results in improved outcome after thrombolysis for myocardial infarction. Ventriculographic, enzymatic, and electrocardiographic evidence from the TEAM-3 Study. Circulation. 1993 Jun;87(6):1829–1839. doi: 10.1161/01.cir.87.6.1829. [DOI] [PubMed] [Google Scholar]
  3. Apple F. S. Biochemical markers of thrombolytic success. IFCC Committee on Standardization of Markers of Cardiac Damage. Scand J Clin Lab Invest Suppl. 1999;230:60–66. [PubMed] [Google Scholar]
  4. Baardman T., Hermens W. T., Lenderink T., Molhoek G. P., Grollier G., Pfisterer M., Simoons M. L. Differential effects of tissue plasminogen activator and streptokinase on infarct size and on rate of enzyme release: influence of early infarct related artery patency. The GUSTO Enzyme Substudy. Eur Heart J. 1996 Feb;17(2):237–246. doi: 10.1093/oxfordjournals.eurheartj.a014840. [DOI] [PubMed] [Google Scholar]
  5. Bar F. W., Vermeer F., de Zwaan C., Ramentol M., Braat S., Simoons M. L., Hermens W. T., van der Laarse A., Verheugt F. W., Krauss X. H. Value of admission electrocardiogram in predicting outcome of thrombolytic therapy in acute myocardial infarction. A randomized trial conducted by The Netherlands Interuniversity Cardiology Institute. Am J Cardiol. 1987 Jan 1;59(1):6–13. doi: 10.1016/s0002-9149(87)80060-7. [DOI] [PubMed] [Google Scholar]
  6. Califf R. M., O'Neil W., Stack R. S., Aronson L., Mark D. B., Mantell S., George B. S., Candela R. J., Kereiakes D. J., Abbottsmith C. Failure of simple clinical measurements to predict perfusion status after intravenous thrombolysis. Ann Intern Med. 1988 May;108(5):658–662. doi: 10.7326/0003-4819-108-5-658. [DOI] [PubMed] [Google Scholar]
  7. Christenson R. H., Ohman E. M., Topol E. J., Peck S., Newby L. K., Duh S. H., Kereiakes D. J., Worley S. J., Alosozana G. L., Wall T. C. Assessment of coronary reperfusion after thrombolysis with a model combining myoglobin, creatine kinase-MB, and clinical variables. TAMI-7 Study Group. Thrombolysis and Angioplasty in Myocardial Infarction-7. Circulation. 1997 Sep 16;96(6):1776–1782. doi: 10.1161/01.cir.96.6.1776. [DOI] [PubMed] [Google Scholar]
  8. Ellis A. K., Little T., Masud A. R., Liberman H. A., Morris D. C., Klocke F. J. Early noninvasive detection of successful reperfusion in patients with acute myocardial infarction. Circulation. 1988 Dec;78(6):1352–1357. doi: 10.1161/01.cir.78.6.1352. [DOI] [PubMed] [Google Scholar]
  9. Garabedian H. D., Gold H. K., Yasuda T., Johns J. A., Finkelstein D. M., Gaivin R. J., Cobbaert C., Leinbach R. C., Collen D. Detection of coronary artery reperfusion with creatine kinase-MB determinations during thrombolytic therapy: correlation with acute angiography. J Am Coll Cardiol. 1988 Apr;11(4):729–734. doi: 10.1016/0735-1097(88)90204-5. [DOI] [PubMed] [Google Scholar]
  10. Glatz J. F., Kleine A. H., van Nieuwenhoven F. A., Hermens W. T., van Dieijen-Visser M. P., van der Vusse G. J. Fatty-acid-binding protein as a plasma marker for the estimation of myocardial infarct size in humans. Br Heart J. 1994 Feb;71(2):135–140. doi: 10.1136/hrt.71.2.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hanley J. A., McNeil B. J. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983 Sep;148(3):839–843. doi: 10.1148/radiology.148.3.6878708. [DOI] [PubMed] [Google Scholar]
  12. Ishii J., Nagamura Y., Nomura M., Wang J. H., Taga S., Kinoshita M., Kurokawa H., Iwase M., Kondo T., Watanabe Y. Early detection of successful coronary reperfusion based on serum concentration of human heart-type cytoplasmic fatty acid-binding protein. Clin Chim Acta. 1997 Jun 27;262(1-2):13–27. doi: 10.1016/s0009-8981(97)06547-9. [DOI] [PubMed] [Google Scholar]
  13. Ishii J., Nomura M., Ando T., Hasegawa H., Kimura M., Kurokawa H., Iwase M., Kondo T., Watanabe Y., Hishida H. Early detection of successful coronary reperfusion based on serum myoglobin concentration: comparison with serum creatine kinase isoenzyme MB activity. Am Heart J. 1994 Oct;128(4):641–648. doi: 10.1016/0002-8703(94)90259-3. [DOI] [PubMed] [Google Scholar]
  14. Ishii J., Wang J. H., Naruse H., Taga S., Kinoshita M., Kurokawa H., Iwase M., Kondo T., Nomura M., Nagamura Y. Serum concentrations of myoglobin vs human heart-type cytoplasmic fatty acid-binding protein in early detection of acute myocardial infarction. Clin Chem. 1997 Aug;43(8 Pt 1):1372–1378. [PubMed] [Google Scholar]
  15. Kircher B. J., Topol E. J., O'Neill W. W., Pitt B. Prediction of infarct coronary artery recanalization after intravenous thrombolytic therapy. Am J Cardiol. 1987 Mar 1;59(6):513–515. doi: 10.1016/0002-9149(87)91158-1. [DOI] [PubMed] [Google Scholar]
  16. Lewis B. S., Ganz W., Laramee P., Cercek B., Hod H., Shah P. K., Lew A. S. Usefulness of a rapid initial increase in plasma creatine kinase activity as a marker of reperfusion during thrombolytic therapy for acute myocardial infarction. Am J Cardiol. 1988 Jul 1;62(1):20–24. doi: 10.1016/0002-9149(88)91358-6. [DOI] [PubMed] [Google Scholar]
  17. Miyata M., Abe S., Arima S., Nomoto K., Kawataki M., Ueno M., Yamashita T., Hamasaki S., Toda H., Tahara M. Rapid diagnosis of coronary reperfusion by measurement of myoglobin level every 15 min in acute myocardial infarction. J Am Coll Cardiol. 1994 Apr;23(5):1009–1015. doi: 10.1016/0735-1097(94)90583-5. [DOI] [PubMed] [Google Scholar]
  18. Ohman E. M., Christenson R. H., Califf R. M., George B. S., Samaha J. K., Kereiakes D. J., Worley S. J., Wall T. C., Berrios E., Sigmon K. N. Noninvasive detection of reperfusion after thrombolysis based on serum creatine kinase MB changes and clinical variables. TAMI 7 Study Group. Thrombolysis and Angioplasty in Myocardial Infarction. Am Heart J. 1993 Oct;126(4):819–826. doi: 10.1016/0002-8703(93)90694-5. [DOI] [PubMed] [Google Scholar]
  19. Tanaka T., Hirota Y., Sohmiya K., Nishimura S., Kawamura K. Serum and urinary human heart fatty acid-binding protein in acute myocardial infarction. Clin Biochem. 1991 Apr;24(2):195–201. doi: 10.1016/0009-9120(91)90571-u. [DOI] [PubMed] [Google Scholar]
  20. Tanasijevic M. J., Cannon C. P., Wybenga D. R., Fischer G. A., Grudzien C., Gibson C. M., Winkelman J. W., Antman E. M., Braunwald E. Myoglobin, creatine kinase MB, and cardiac troponin-I to assess reperfusion after thrombolysis for acute myocardial infarction: results from TIMI 10A. Am Heart J. 1997 Oct;134(4):622–630. doi: 10.1016/s0002-8703(97)70044-9. [DOI] [PubMed] [Google Scholar]
  21. Van Nieuwenhoven F. A., Kleine A. H., Wodzig W. H., Hermens W. T., Kragten H. A., Maessen J. G., Punt C. D., Van Dieijen M. P., Van der Vusse G. J., Glatz J. F. Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ratio of myoglobin over fatty acid-binding protein. Circulation. 1995 Nov 15;92(10):2848–2854. doi: 10.1161/01.cir.92.10.2848. [DOI] [PubMed] [Google Scholar]
  22. Willems G. M., Visser M. P., Krill M. T., Hermens W. T. Quantitative analysis of plasma enzyme levels based upon simultaneous determination of different enzymes. Cardiovasc Res. 1982 Mar;16(3):120–131. doi: 10.1093/cvr/16.3.120. [DOI] [PubMed] [Google Scholar]
  23. Willems J. L., Willems R. J., Willems G. M., Arnold A. E., Van de Werf F., Verstraete M. Significance of initial ST segment elevation and depression for the management of thrombolytic therapy in acute myocardial infarction. European Cooperative Study Group for Recombinant Tissue-Type Plasminogen Activator. Circulation. 1990 Oct;82(4):1147–1158. doi: 10.1161/01.cir.82.4.1147. [DOI] [PubMed] [Google Scholar]
  24. Wodzig K. W., Pelsers M. M., van der Vusse G. J., Roos W., Glatz J. F. One-step enzyme-linked immunosorbent assay (ELISA) for plasma fatty acid-binding protein. Ann Clin Biochem. 1997 May;34(Pt 3):263–268. doi: 10.1177/000456329703400307. [DOI] [PubMed] [Google Scholar]
  25. Yusuf S., Lopez R., Maddison A., Maw P., Ray N., McMillan S., Sleight P. Value of electrocardiogram in predicting and estimating infarct size in man. Br Heart J. 1979 Sep;42(3):286–293. doi: 10.1136/hrt.42.3.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zabel M., Hohnloser S. H., Köster W., Prinz M., Kasper W., Just H. Analysis of creatine kinase, CK-MB, myoglobin, and troponin T time-activity curves for early assessment of coronary artery reperfusion after intravenous thrombolysis. Circulation. 1993 May;87(5):1542–1550. doi: 10.1161/01.cir.87.5.1542. [DOI] [PubMed] [Google Scholar]
  27. de Groot M. J., Wodzig K. W., Simoons M. L., Glatz J. F., Hermens W. T. Measurement of myocardial infarct size from plasma fatty acid-binding protein or myoglobin, using individually estimated clearance rates. Cardiovasc Res. 1999 Nov;44(2):315–324. doi: 10.1016/s0008-6363(99)00199-6. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES