Skip to main content
Heart logoLink to Heart
. 2001 Jul;86(1):81–87. doi: 10.1136/heart.86.1.81

Effect of levosimendan on myocardial contractility, coronary and peripheral blood flow, and arrhythmias during coronary artery ligation and reperfusion in the in vivo pig model

E du Toit 1, D Hofmann 1, J McCarthy 1, C Pineda 1
PMCID: PMC1729816  PMID: 11410569

Abstract

OBJECTIVE—To determine whether levosimendan, a calcium sensitiser that facilitates the activation of the contractile apparatus by calcium, improves myocardial contractile function during severe ischaemia and reperfusion without exacerbating the incidence of arrhythmias.
DESIGN—Pigs were pretreated orally twice daily for 10 days with 0.08 mg/kg levosimendan or placebo. On day 11 the left main coronary artery was ligated for 30 minutes, followed by 30 minutes of reperfusion. A bolus dose of levosimendan, 11.2 µg/kg intravenously, or placebo was given 30 minutes before coronary ligation, followed by a continuous infusion of 0.2 µg/kg/min levosimendan or placebo for the remainder of the experiment.
RESULTS—During the ischaemic period, cardiac output was higher in the levosimendan group than in the placebo group (mean (SD): 2.6 (0.5) v 2.0 (0.2) l/min, p < 0.05) and systemic vascular resistance was lower (2024 (188) v 2669 (424) dyne.s−1.cm−5, p < 0.005). During reperfusion, cardiac output and contractility (LVmaxdP/dt (pos), 956 (118) v 784 (130) mm Hg/s, p < 0.05) were increased by levosimendan. The incidence of ischaemic ventricular fibrillation and tachycardia was similar in the two groups but there were more arrhythmic events (ventricular tachycardia and ventricular fibrillation) in the levosimendan treated group (8/12 levosimendan v 1/9 control p = 0.05).
CONCLUSIONS—Levosimendan improved cardiac output and myocardial contractility during coronary artery ligation and reperfusion. However, it increased the number of arrhythmic events during ischaemia in this model of in vivo regional ischaemia.


Keywords: calcium sensitisers; myocardial ischaemia; arrhythmias

Full Text

The Full Text of this article is available as a PDF (142.7 KB).

Figure 1  .

Figure 1  

Site of action of various inotropic agents. Most of the conventional inotropes increase cyclic adenosine monophosphate (cAMP), with a subsequent increase in intracellular calcium ion concentration which enhances contraction. However, increased calcium ion concentrations may promote arrhythmias, particularly during ischaemia and reperfusion. Calcium sensitisers such as levosimendan, pimobendan, and EMD 53998 may enhance myocardial contraction without increasing intracellular calcium ion concentration and the associated risk of increased arrhythmias. AMP, adenosine monophosphate; ATP, adenosine triphosphate; PDE, phosphodiesterase.

Figure 2  .

Figure 2  

Diagrammatic representation of the experimental protocol. Animals were treated with levosimendan (levo) orally for 10 days. Thirty minutes before coronary artery ligation (CAL), animals were given a bolus dose of levosimendan intravenously, followed by a continuous infusion throughout coronary artery ligation and reperfusion.

Figure 3  .

Figure 3  

Levosimendan increased blood flow in the peripheral ischaemic zone of the left ventricle before coronary artery ligation (before ischaemia) and during ischaemia and after reperfusion when compared with placebo treated hearts. The peripheral ischaemic zone was defined as the unstained (with patent blue) outer border of the ischaemic zone in the left ventricle. The ischaemic zone was delineated at the end of each experiment by injection of patent blue dye into the left atrium. *p < 0.05; **p < 0.001 (n = 5).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Kitada Y., Narimatsu A. Effect of a calcium-sensitizing positive inotropic agent MCI-154 and its combined use with enalapril on postischemic contractile dysfunction of dog hearts. J Cardiovasc Pharmacol. 1995 Oct;26(4):653–659. doi: 10.1097/00005344-199510000-00022. [DOI] [PubMed] [Google Scholar]
  2. Clusin W. T., Bristow M. R., Karagueuzian H. S., Katzung B. G., Schroeder J. S. Do calcium-dependent ionic currents mediate ischemic ventricular fibrillation? Am J Cardiol. 1982 Feb 18;49(3):606–612. doi: 10.1016/s0002-9149(82)80019-2. [DOI] [PubMed] [Google Scholar]
  3. Du Toit E. F., Muller C. A., McCarthy J., Opie L. H. Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleotide levels during ischemia/reperfusion in the Langendorff-perfused guinea pig heart. J Pharmacol Exp Ther. 1999 Aug;290(2):505–514. [PubMed] [Google Scholar]
  4. Edes I., Kiss E., Kitada Y., Powers F. M., Papp J. G., Kranias E. G., Solaro R. J. Effects of Levosimendan, a cardiotonic agent targeted to troponin C, on cardiac function and on phosphorylation and Ca2+ sensitivity of cardiac myofibrils and sarcoplasmic reticulum in guinea pig heart. Circ Res. 1995 Jul;77(1):107–113. doi: 10.1161/01.res.77.1.107. [DOI] [PubMed] [Google Scholar]
  5. Gao W. D., Atar D., Backx P. H., Marban E. Relationship between intracellular calcium and contractile force in stunned myocardium. Direct evidence for decreased myofilament Ca2+ responsiveness and altered diastolic function in intact ventricular muscle. Circ Res. 1995 Jun;76(6):1036–1048. doi: 10.1161/01.res.76.6.1036. [DOI] [PubMed] [Google Scholar]
  6. Grover G. J. Protective effects of ATP sensitive potassium channel openers in models of myocardial ischaemia. Cardiovasc Res. 1994 Jun;28(6):778–782. doi: 10.1093/cvr/28.6.778. [DOI] [PubMed] [Google Scholar]
  7. Haikala H., Levijoki J., Lindén I. B. Troponin C-mediated calcium sensitization by levosimendan accelerates the proportional development of isometric tension. J Mol Cell Cardiol. 1995 Oct;27(10):2155–2165. doi: 10.1016/s0022-2828(95)91371-8. [DOI] [PubMed] [Google Scholar]
  8. Haikala H., Nissinen E., Etemadzadeh E., Levijoki J., Lindén I. B. Troponin C-mediated calcium sensitization induced by levosimendan does not impair relaxation. J Cardiovasc Pharmacol. 1995 May;25(5):794–801. doi: 10.1097/00005344-199505000-00016. [DOI] [PubMed] [Google Scholar]
  9. Hasenfuss G., Pieske B., Castell M., Kretschmann B., Maier L. S., Just H. Influence of the novel inotropic agent levosimendan on isometric tension and calcium cycling in failing human myocardium. Circulation. 1998 Nov 17;98(20):2141–2147. doi: 10.1161/01.cir.98.20.2141. [DOI] [PubMed] [Google Scholar]
  10. Hearse D. J., Muller C. A., Fukanami M., Kudoh Y., Opie L. H., Yellon D. M. Regional myocardial ischemia: characterization of temporal, transmural and lateral flow interfaces in the porcine heart. Can J Cardiol. 1986 Jan-Feb;2(1):48–61. [PubMed] [Google Scholar]
  11. Krause S. M., Jacobus W. E., Becker L. C. Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic "stunned" myocardium. Circ Res. 1989 Aug;65(2):526–530. doi: 10.1161/01.res.65.2.526. [DOI] [PubMed] [Google Scholar]
  12. Lilleberg J., Nieminen M. S., Akkila J., Heikkilä L., Kuitunen A., Lehtonen L., Verkkala K., Mattila S., Salmenperä M. Effects of a new calcium sensitizer, levosimendan, on haemodynamics, coronary blood flow and myocardial substrate utilization early after coronary artery bypass grafting. Eur Heart J. 1998 Apr;19(4):660–668. doi: 10.1053/euhj.1997.0806. [DOI] [PubMed] [Google Scholar]
  13. Lilleberg J., Sundberg S., Häyhä M., Akkila J., Nieminen M. S. Haemodynamic dose-efficacy of levosimendan in healthy volunteers. Eur J Clin Pharmacol. 1994;47(3):267–274. doi: 10.1007/BF02570507. [DOI] [PubMed] [Google Scholar]
  14. Lubbe W. F., Peisach M., Pretorius R., Bruyneel K. J., Opie L. H. Distribution of myocardial blood flow before and after coronary artery ligation in the baboon. Relation to early ventricular fibrillation. Cardiovasc Res. 1974 Jul;8(4):478–487. doi: 10.1093/cvr/8.4.478. [DOI] [PubMed] [Google Scholar]
  15. Lubbe W. F., Podzuweit T., Daries P. S., Opie L. H. The role of cyclic adenosine monophosphate in adrenergic effects on ventricular vulnerability to fibrillation in the isolated perfused rat heart. J Clin Invest. 1978 May;61(5):1260–1269. doi: 10.1172/JCI109042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Muller C. A., Opie L. H., Hamm C. W., Peisach M., Gihwala D. Prevention of ventricular fibrillation by metoprolol in a pig model of acute myocardial ischaemia: absence of a major arrhythmogenic role for cyclic AMP. J Mol Cell Cardiol. 1986 Apr;18(4):375–387. doi: 10.1016/s0022-2828(86)80901-4. [DOI] [PubMed] [Google Scholar]
  17. Muller C. A., Opie L. H., Peisach M., Pineda C. A. Chronic oral pretreatment with the angiotensin converting enzyme inhibitor, trandolapril decreases ventricular fibrillation in acute ischaemia and reperfusion. Eur Heart J. 1994 Jul;15(7):988–996. doi: 10.1093/oxfordjournals.eurheartj.a060620. [DOI] [PubMed] [Google Scholar]
  18. Muller C. A., Opie L. H., Pineda C. A., McCarthy J., Kraljevic V. Combination of a calcium antagonist, verapamil, with an angiotensin converting enzyme inhibitor, trandolapril, in experimental myocardial ischemia and reperfusion: antiarrhythmic and hemodynamic effects of chronic oral pretreatment. Cardiovasc Drugs Ther. 1998 Oct;12(5):449–455. doi: 10.1023/a:1007797931302. [DOI] [PubMed] [Google Scholar]
  19. Nijhawan N., Nicolosi A. C., Montgomery M. W., Aggarwal A., Pagel P. S., Warltier D. C. Levosimendan enhances cardiac performance after cardiopulmonary bypass: a prospective, randomized placebo-controlled trial. J Cardiovasc Pharmacol. 1999 Aug;34(2):219–228. doi: 10.1097/00005344-199908000-00007. [DOI] [PubMed] [Google Scholar]
  20. Opie L. H., Coetzee W. A., Dennis S. C., Thandroyen F. T. A potential role of calcium ions in early ischemic and reperfusion arrhythmias. Ann N Y Acad Sci. 1988;522:464–477. doi: 10.1111/j.1749-6632.1988.tb33386.x. [DOI] [PubMed] [Google Scholar]
  21. Opie L. H., Coetzee W. A. Role of calcium ions in reperfusion arrhythmias: relevance to pharmacologic intervention. Cardiovasc Drugs Ther. 1988 Dec;2(5):623–636. doi: 10.1007/BF00054202. [DOI] [PubMed] [Google Scholar]
  22. Opie L. H., Nathan D., Lubbe W. F. Biochemical aspects of arrhythmogenesis and ventricular fibrillation. Am J Cardiol. 1979 Jan;43(1):131–148. doi: 10.1016/0002-9149(79)90055-9. [DOI] [PubMed] [Google Scholar]
  23. Pagel P. S., Harkin C. P., Hettrick D. A., Warltier D. C. Levosimendan (OR-1259), a myofilament calcium sensitizer, enhances myocardial contractility but does not alter isovolumic relaxation in conscious and anesthetized dogs. Anesthesiology. 1994 Oct;81(4):974–987. doi: 10.1097/00000542-199410000-00025. [DOI] [PubMed] [Google Scholar]
  24. Rump A. F., Acar D., Klaus W. A quantitative comparison of functional and anti-ischaemic effects of the phosphodiesterase-inhibitors, amrinone, milrinone and levosimendan in rabbit isolated hearts. Br J Pharmacol. 1994 Jul;112(3):757–762. doi: 10.1111/j.1476-5381.1994.tb13143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sandell E. P., Hayha M., Antila S., Heikkinen P., Ottoila P., Lehtonen L. A., Pentikainen P. J. Pharmacokinetics of levosimendan in healthy volunteers and patients with congestive heart failure. J Cardiovasc Pharmacol. 1995;26 (Suppl 1):S57–S62. [PubMed] [Google Scholar]
  26. Soei L. K., Sassen L. M., Fan D. S., van Veen T., Krams R., Verdouw P. D. Myofibrillar Ca2+ sensitization predominantly enhances function and mechanical efficiency of stunned myocardium. Circulation. 1994 Aug;90(2):959–969. doi: 10.1161/01.cir.90.2.959. [DOI] [PubMed] [Google Scholar]
  27. Solaro R. J., Moir A. J., Perry S. V. Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature. 1976 Aug 12;262(5569):615–617. doi: 10.1038/262615a0. [DOI] [PubMed] [Google Scholar]
  28. Varro A., Papp J. G. Classification of positive inotropic actions based on electrophysiologic characteristics: where should calcium sensitizers be placed? J Cardiovasc Pharmacol. 1995;26 (Suppl 1):S32–S44. [PubMed] [Google Scholar]
  29. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  30. Yokoshiki H., Katsube Y., Sunagawa M., Sperelakis N. Levosimendan, a novel Ca2+ sensitizer, activates the glibenclamide-sensitive K+ channel in rat arterial myocytes. Eur J Pharmacol. 1997 Aug 27;333(2-3):249–259. doi: 10.1016/s0014-2999(97)01108-4. [DOI] [PubMed] [Google Scholar]
  31. Yokoshiki H., Katsube Y., Sunagawa M., Sperelakis N. The novel calcium sensitizer levosimendan activates the ATP-sensitive K+ channel in rat ventricular cells. J Pharmacol Exp Ther. 1997 Oct;283(1):375–383. [PubMed] [Google Scholar]
  32. Zimmermann N., Boknik P., Gams E., Herzig J. W., Neumann J., Scholz H. Calcium sensitization as new principle of inotropic therapy in end-stage heart failure? Eur J Cardiothorac Surg. 1998 Jul;14(1):70–75. doi: 10.1016/s1010-7940(98)00129-8. [DOI] [PubMed] [Google Scholar]
  33. de Zeeuw S., Trines S. A., Krams R., Verdouw P. D., Duncker D. J. Cardiovascular profile of the calcium sensitizer EMD 57033 in open-chest anaesthetized pigs with regionally stunned myocardium. Br J Pharmacol. 2000 Apr;129(7):1413–1422. doi: 10.1038/sj.bjp.0703231. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES