Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jan;63(1):280–288. doi: 10.1128/iai.63.1.280-288.1995

Noninhibitory binding of human interleukin-2-activated natural killer cells to the germ tube forms of Candida albicans.

G Arancia 1, A Molinari 1, P Crateri 1, A Stringaro 1, C Ramoni 1, M L Dupuis 1, M J Gomez 1, A Torosantucci 1, A Cassone 1
PMCID: PMC172989  PMID: 7806367

Abstract

During incubation in vitro with yeast or germ tube forms of Candida albicans, only 2 to 6% of freshly isolated human natural killer (NK) cells (> 85% CD16+, CD56+, CD3-; < 15% CD3+; cytolytic for the NK-susceptible target K562 but not for the NK-resistant target DAUDI), were seen to interact with the fungal cells. As seen under the electron microscope, the contact area had a limited extent and was narrow, and neither the surface nor the intracytoplasmic organization of the NK cell was altered. In contrast, more than 30% of interleukin-2-activated NK (LAK) cells (> 96% CD16+, CD56+, CD3-; 1.5% CD3+; cytolytic for both K562 and DAUDI targets) interacted closely with the fungus. This interaction was particularly extensive with the surface of the fungal germ tube that was intimately enveloped by villous protrusions from the lymphocyte surface. The fungus-interacting LAK cell also showed a remarkable redistribution of surface microvilli and polarization of cytoplasmic organelles, such as the Golgi apparatus, centrioles, and granules, toward the area of fungal contact. Together with the elevated cytolytic potential against the K562 and DAUDI targets, all the morphological data suggested the presence of a potentially active lytic machinery in the fungus-interacting LAK cell. Nonetheless, two independent assays for anticandidal activity did not show consistent killing or fungal growth inhibition by either fresh NK or LAK cells. While offering direct evidence of the strong interaction between human LAK cells and the germ tubes, precursors of tissue-invasive hyphal forms of C. albicans, our observations also suggest that this interaction may not be sufficient to kill the fungus or arrest its growth.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arancia G., Malorni W., Iosi F., Grossi C. E., Zarcone D., Donelli G. An SEM analysis of the interaction between lymphokine-activated killer cells and tumor targets. Int J Cancer Suppl. 1989;4:58–61. doi: 10.1002/ijc.2910440716. [DOI] [PubMed] [Google Scholar]
  2. Arancia G., Sirianni M. C., Malorni W., Soddu S., Crateri P., Fiorentini C., Aiuti F., Donelli G. Suicide behavior of target cells after binding with natural killer cells. Blood Cells. 1991;17(1):159–175. [PubMed] [Google Scholar]
  3. Ausiello C. M., Palma C., Spagnoli G. C., Piazza A., Casciani C. U., Cassone A. Cytotoxic effectors in human peripheral blood mononuclear cells induced by a mannoprotein complex of Candida albicans: a comparison with interleukin 2-activated killer cells. Cell Immunol. 1989 Jul;121(2):349–359. doi: 10.1016/0008-8749(89)90033-6. [DOI] [PubMed] [Google Scholar]
  4. Ausiello C. M., Urbani F., Gessani S., Spagnoli G. C., Gomez M. J., Cassone A. Cytokine gene expression in human peripheral blood mononuclear cells stimulated by mannoprotein constituents from Candida albicans. Infect Immun. 1993 Oct;61(10):4105–4111. doi: 10.1128/iai.61.10.4105-4111.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beno D. W., Mathews H. L. Growth inhibition of Candida albicans by interleukin-2-induced lymph node cells. Cell Immunol. 1990 Jun;128(1):89–100. doi: 10.1016/0008-8749(90)90009-g. [DOI] [PubMed] [Google Scholar]
  6. Beno D. W., Mathews H. L. Quantitative measurement of lymphocyte mediated growth inhibition of Candida albicans. J Immunol Methods. 1993 Sep 15;164(2):155–164. doi: 10.1016/0022-1759(93)90308-t. [DOI] [PubMed] [Google Scholar]
  7. Bistoni F., Baccarini M., Blasi E., Marconi P., Puccetti P., Garaci E. Correlation between in vivo and in vitro studies of modulation of resistance to experimental Candida albicans infection by cyclophosphamide in mice. Infect Immun. 1983 Apr;40(1):46–55. doi: 10.1128/iai.40.1.46-55.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bistoni F., Vecchiarelli A., Cenci E., Puccetti P., Marconi P., Cassone A. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect Immun. 1986 Feb;51(2):668–674. doi: 10.1128/iai.51.2.668-674.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blanchard D. K., Michelini-Norris M. B., Djeu J. Y. Production of granulocyte-macrophage colony-stimulating factor by large granular lymphocytes stimulated with Candida albicans: role in activation of human neutrophil function. Blood. 1991 May 15;77(10):2259–2265. [PubMed] [Google Scholar]
  10. Bouchara J. P., Tronchin G., Annaix V., Robert R., Senet J. M. Laminin receptors on Candida albicans germ tubes. Infect Immun. 1990 Jan;58(1):48–54. doi: 10.1128/iai.58.1.48-54.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cantorna M. T., Balish E. Role of CD4+ lymphocytes in resistance to mucosal candidiasis. Infect Immun. 1991 Jul;59(7):2447–2455. doi: 10.1128/iai.59.7.2447-2455.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cassone A. Cell wall of pathogenic yeasts and implications for antimycotic therapy. Drugs Exp Clin Res. 1986;12(6-7):635–643. [PubMed] [Google Scholar]
  13. Cassone A., Palma C., Djeu J. Y., Aiuti F., Quinti I. Anticandidal activity and interleukin-1 beta and interleukin-6 production by polymorphonuclear leukocytes are preserved in subjects with AIDS. J Clin Microbiol. 1993 May;31(5):1354–1357. doi: 10.1128/jcm.31.5.1354-1357.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cutler J. E. Putative virulence factors of Candida albicans. Annu Rev Microbiol. 1991;45:187–218. doi: 10.1146/annurev.mi.45.100191.001155. [DOI] [PubMed] [Google Scholar]
  15. De Bernardis F., Adriani D., Lorenzini R., Pontieri E., Carruba G., Cassone A. Filamentous growth and elevated vaginopathic potential of a nongerminative variant of Candida albicans expressing low virulence in systemic infection. Infect Immun. 1993 Apr;61(4):1500–1508. doi: 10.1128/iai.61.4.1500-1508.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. De Bernardis F., Molinari A., Boccanera M., Stringaro A., Robert R., Senet J. M., Arancia G., Cassone A. Modulation of cell surface-associated mannoprotein antigen expression in experimental candidal vaginitis. Infect Immun. 1994 Feb;62(2):509–519. doi: 10.1128/iai.62.2.509-519.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Djeu J. Y., Blanchard D. K. Regulation of human polymorphonuclear neutrophil (PMN) activity against Candida albicans by large granular lymphocytes via release of a PMN-activating factor. J Immunol. 1987 Oct 15;139(8):2761–2767. [PubMed] [Google Scholar]
  18. Gilmore B. J., Retsinas E. M., Lorenz J. S., Hostetter M. K. An iC3b receptor on Candida albicans: structure, function, and correlates for pathogenicity. J Infect Dis. 1988 Jan;157(1):38–46. doi: 10.1093/infdis/157.1.38. [DOI] [PubMed] [Google Scholar]
  19. Greenfield R. A., Abrams V. L., Crawford D. L., Kuhls T. L. Effect of abrogation of natural killer cell activity on the course of candidiasis induced by intraperitoneal administration and gastrointestinal candidiasis in mice with severe combined immunodeficiency. Infect Immun. 1993 Jun;61(6):2520–2525. doi: 10.1128/iai.61.6.2520-2525.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Greenfield R. A. Host defense system interactions with Candida. J Med Vet Mycol. 1992;30(2):89–104. [PubMed] [Google Scholar]
  21. Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hidore M. R., Mislan T. W., Murphy J. W. Responses of murine natural killer cells to binding of the fungal target Cryptococcus neoformans. Infect Immun. 1991 Apr;59(4):1489–1499. doi: 10.1128/iai.59.4.1489-1499.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hidore M. R., Murphy J. W. Murine natural killer cell interactions with a fungal target, Cryptococcus neoformans. Infect Immun. 1989 Jul;57(7):1990–1997. doi: 10.1128/iai.57.7.1990-1997.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  25. Levitz S. M., Dupont M. P., Smail E. H. Direct activity of human T lymphocytes and natural killer cells against Cryptococcus neoformans. Infect Immun. 1994 Jan;62(1):194–202. doi: 10.1128/iai.62.1.194-202.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Malorni W., Iosi F., Zarcone D., Grossi C. E., Arancia G. Role of adhesion molecules in the mechanism of non-MHC (major histocompatibility complex) restricted cell-mediated cytotoxicity. Scanning Microsc. 1993 Mar;7(1):323–332. [PubMed] [Google Scholar]
  27. Marconi P., Cassone A., Baccarini M., Tissi L., Garaci E., Bonmassar E., Frati L., Bistoni F. Relationships among tumor load, route of tumor inoculation, and response to immunochemotherapy in a murine lymphoma model. J Natl Cancer Inst. 1983 Aug;71(2):299–307. [PubMed] [Google Scholar]
  28. Murphy J. W., Hidore M. R., Wong S. C. Direct interactions of human lymphocytes with the yeast-like organism, Cryptococcus neoformans. J Clin Invest. 1993 Apr;91(4):1553–1566. doi: 10.1172/JCI116361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Murphy J. W. Immunity to fungi. Curr Opin Immunol. 1989;2(3):360–367. doi: 10.1016/0952-7915(89)90142-8. [DOI] [PubMed] [Google Scholar]
  30. Naume B., Nonstad U., Steinkjer B., Funderud S., Smeland E., Espevik T. Immunomagnetic isolation of NK and LAK cells. J Immunol Methods. 1991 Jan 24;136(1):1–9. doi: 10.1016/0022-1759(91)90242-8. [DOI] [PubMed] [Google Scholar]
  31. Perussia B., Ramoni C., Anegon I., Cuturi M. C., Faust J., Trinchieri G. Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Nat Immun Cell Growth Regul. 1987;6(4):171–188. [PubMed] [Google Scholar]
  32. Perussia B., Starr S., Abraham S., Fanning V., Trinchieri G. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immunol. 1983 May;130(5):2133–2141. [PubMed] [Google Scholar]
  33. Quinti I., Palma C., Guerra E. C., Gomez M. J., Mezzaroma I., Aiuti F., Cassone A. Proliferative and cytotoxic responses to mannoproteins of Candida albicans by peripheral blood lymphocytes of HIV-infected subjects. Clin Exp Immunol. 1991 Sep;85(3):485–492. doi: 10.1111/j.1365-2249.1991.tb05754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Saxena A., Calderone R. Purification and characterization of the extracellular C3d-binding protein of Candida albicans. Infect Immun. 1990 Feb;58(2):309–314. doi: 10.1128/iai.58.2.309-314.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scaringi L., Cornacchione P., Rosati E., Boccanera M., Cassone A., Bistoni F., Marconi P. Induction of LAK-like cells in the peritoneal cavity of mice by inactivated Candida albicans. Cell Immunol. 1990 Sep;129(2):271–287. doi: 10.1016/0008-8749(90)90204-5. [DOI] [PubMed] [Google Scholar]
  36. Scaringi L., Marconi P., Boccanera M., Tissi L., Bistoni F., Cassone A. Cell wall components of Candida albicans as immunomodulators: induction of natural killer and macrophage-mediated peritoneal cell cytotoxicity in mice by mannoprotein and glucan fractions. J Gen Microbiol. 1988 May;134(5):1265–1274. doi: 10.1099/00221287-134-5-1265. [DOI] [PubMed] [Google Scholar]
  37. Scaringi L., Rosati E., Cornacchione P., Rossi R., Marconi P. In vivo modulation of lymphokine-activated killer cell activity by cell wall components of Candida albicans. Cell Immunol. 1992 Feb;139(2):438–454. doi: 10.1016/0008-8749(92)90084-3. [DOI] [PubMed] [Google Scholar]
  38. Sobel J. D., Muller G., Buckley H. R. Critical role of germ tube formation in the pathogenesis of candidal vaginitis. Infect Immun. 1984 Jun;44(3):576–580. doi: 10.1128/iai.44.3.576-580.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Torosantucci A., Palma C., Boccanera M., Ausiello C. M., Spagnoli G. C., Cassone A. Lymphoproliferative and cytotoxic responses of human peripheral blood mononuclear cells to mannoprotein constituents of Candida albicans. J Gen Microbiol. 1990 Nov;136(11):2155–2163. doi: 10.1099/00221287-136-11-2155. [DOI] [PubMed] [Google Scholar]
  40. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376. doi: 10.1016/S0065-2776(08)60664-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Trinchieri G., Matsumoto-Kobayashi M., Clark S. C., Seehra J., London L., Perussia B. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med. 1984 Oct 1;160(4):1147–1169. doi: 10.1084/jem.160.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zarcone D., Viale O., Cerruti G., Tenca C., Malorni W., Arancia G., Iosi F., Galandrini R., Velardi A., Moretta A. Antibodies to adhesion molecules inhibit the lytic function of MHC-unrestricted cytotoxic cells by preventing their activation. Cell Immunol. 1992 Sep;143(2):389–404. doi: 10.1016/0008-8749(92)90035-n. [DOI] [PubMed] [Google Scholar]
  43. Zunino S. J., Hudig D. Interactions between human natural killer (NK) lymphocytes and yeast cells: human NK cells do not kill Candida albicans, although C. albicans blocks NK lysis of K562 cells. Infect Immun. 1988 Mar;56(3):564–569. doi: 10.1128/iai.56.3.564-569.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES