Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jan;63(1):340–344. doi: 10.1128/iai.63.1.340-344.1995

The primary structure of Clostridium septicum alpha-toxin exhibits similarity with that of Aeromonas hydrophila aerolysin.

J Ballard 1, J Crabtree 1, B A Roe 1, R K Tweten 1
PMCID: PMC172997  PMID: 7806374

Abstract

The gene for Clostridium septicum alpha-toxin was cloned and expressed in Escherichia coli from C. septicum BX96. The toxin was determined to be 443 amino acids in length, with a 31-residue signal peptide that was removed from the toxin during secretion. No extended hydrophobic regions were observed in the mature toxin sequence. Expression of alpha-toxin in E. coli BL21 resulted in the production of ATpro, which was identical to native toxin from C. septicum with respect to activity and activation. The proteolytic activation site for alpha-toxin was determined to be on the carboxy-terminal side of arginine 398, which lies within the sequence KKRRGKR-398SVD. Previous work showing similarities in activation and mechanism between alpha-toxin and Aeromonas hydrophila aerolysin was extended to the primary structures of both toxins. The DNA-derived primary sequence of alpha-toxin exhibited 27% identity and 72% similarity over a 387-residue region with the primary structure of the A. hydrophila aerolysin toxin, a level of similarity heretofore unobserved between toxins produced by a gram-positive organism and a gram-negative organism.

Full Text

The Full Text of this article is available as a PDF (252.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballard J., Bryant A., Stevens D., Tweten R. K. Purification and characterization of the lethal toxin (alpha-toxin) of Clostridium septicum. Infect Immun. 1992 Mar;60(3):784–790. doi: 10.1128/iai.60.3.784-790.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ballard J., Sokolov Y., Yuan W. L., Kagan B. L., Tweten R. K. Activation and mechanism of Clostridium septicum alpha toxin. Mol Microbiol. 1993 Nov;10(3):627–634. doi: 10.1111/j.1365-2958.1993.tb00934.x. [DOI] [PubMed] [Google Scholar]
  3. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. doi: 10.1038/358727a0. [DOI] [PubMed] [Google Scholar]
  4. Dyer D. W., Iandolo J. J. Rapid isolation of DNA from Staphylococcus aureus. Appl Environ Microbiol. 1983 Jul;46(1):283–285. doi: 10.1128/aem.46.1.283-285.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garland W. J., Buckley J. T. The cytolytic toxin aerolysin must aggregate to disrupt erythrocytes, and aggregation is stimulated by human glycophorin. Infect Immun. 1988 May;56(5):1249–1253. doi: 10.1128/iai.56.5.1249-1253.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Geoffroy C., Mengaud J., Alouf J. E., Cossart P. Alveolysin, the thiol-activated toxin of Bacillus alvei, is homologous to listeriolysin O, perfringolysin O, pneumolysin, and streptolysin O and contains a single cysteine. J Bacteriol. 1990 Dec;172(12):7301–7305. doi: 10.1128/jb.172.12.7301-7305.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haas A., Dumbsky M., Kreft J. Listeriolysin genes: complete sequence of ilo from Listeria ivanovii and of lso from Listeria seeligeri. Biochim Biophys Acta. 1992 Feb 28;1130(1):81–84. doi: 10.1016/0167-4781(92)90466-d. [DOI] [PubMed] [Google Scholar]
  8. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  9. Howard S. P., Buckley J. T. Activation of the hole-forming toxin aerolysin by extracellular processing. J Bacteriol. 1985 Jul;163(1):336–340. doi: 10.1128/jb.163.1.336-340.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Howard S. P., Buckley J. T. Membrane glycoprotein receptor and hole-forming properties of a cytolytic protein toxin. Biochemistry. 1982 Mar 30;21(7):1662–1667. doi: 10.1021/bi00536a029. [DOI] [PubMed] [Google Scholar]
  11. Imagawa T., Dohi Y., Higashi Y. Cloning, nucleotide sequence and expression of a hemolysin gene of Clostridium septicum. FEMS Microbiol Lett. 1994 Apr 15;117(3):287–292. doi: 10.1016/0378-1097(94)90573-8. [DOI] [PubMed] [Google Scholar]
  12. Kehoe M. A., Miller L., Walker J. A., Boulnois G. J. Nucleotide sequence of the streptolysin O (SLO) gene: structural homologies between SLO and other membrane-damaging, thiol-activated toxins. Infect Immun. 1987 Dec;55(12):3228–3232. doi: 10.1128/iai.55.12.3228-3232.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mengaud J., Vicente M. F., Chenevert J., Pereira J. M., Geoffroy C., Gicquel-Sanzey B., Baquero F., Perez-Diaz J. C., Cossart P. Expression in Escherichia coli and sequence analysis of the listeriolysin O determinant of Listeria monocytogenes. Infect Immun. 1988 Apr;56(4):766–772. doi: 10.1128/iai.56.4.766-772.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ochman H., Gerber A. S., Hartl D. L. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988 Nov;120(3):621–623. doi: 10.1093/genetics/120.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Parker M. W., Buckley J. T., Postma J. P., Tucker A. D., Leonard K., Pattus F., Tsernoglou D. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature. 1994 Jan 20;367(6460):292–295. doi: 10.1038/367292a0. [DOI] [PubMed] [Google Scholar]
  16. Tweten R. K. Nucleotide sequence of the gene for perfringolysin O (theta-toxin) from Clostridium perfringens: significant homology with the genes for streptolysin O and pneumolysin. Infect Immun. 1988 Dec;56(12):3235–3240. doi: 10.1128/iai.56.12.3235-3240.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Watson M. E. Compilation of published signal sequences. Nucleic Acids Res. 1984 Jul 11;12(13):5145–5164. doi: 10.1093/nar/12.13.5145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. van der Goot F. G., Lakey J., Pattus F., Kay C. M., Sorokine O., Van Dorsselaer A., Buckley J. T. Spectroscopic study of the activation and oligomerization of the channel-forming toxin aerolysin: identification of the site of proteolytic activation. Biochemistry. 1992 Sep 15;31(36):8566–8570. doi: 10.1021/bi00151a026. [DOI] [PubMed] [Google Scholar]
  19. van der Goot F. G., Pattus F., Wong K. R., Buckley J. T. Oligomerization of the channel-forming toxin aerolysin precedes insertion into lipid bilayers. Biochemistry. 1993 Mar 16;32(10):2636–2642. doi: 10.1021/bi00061a023. [DOI] [PubMed] [Google Scholar]
  20. von Heijne G. How signal sequences maintain cleavage specificity. J Mol Biol. 1984 Feb 25;173(2):243–251. doi: 10.1016/0022-2836(84)90192-x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES