Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jan;63(1):349–352. doi: 10.1128/iai.63.1.349-352.1995

Immunization of cattle with recombinant Babesia bovis merozoite surface antigen-1.

S A Hines 1, G H Palmer 1, D P Jasmer 1, W L Goff 1, T F McElwain 1
PMCID: PMC172999  PMID: 7806376

Abstract

Cattle immunized with a recombinant merozoite surface antigen-1 molecule (MSA-1) produced high-titered antibody that reacted with the surface of the parasite and neutralized merozoite infectivity in vitro. However, recombinant MSA-1 immunization did not confer protection against challenge with virulent Babesia bovis. These results indicate that antibody-mediated neutralization of merozoite infectivity in vitro, at least for MSA-1-specific antibody, does not reflect in vivo protective immunity to babesiosis.

Full Text

The Full Text of this article is available as a PDF (178.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afonso L. C., Scharton T. M., Vieira L. Q., Wysocka M., Trinchieri G., Scott P. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science. 1994 Jan 14;263(5144):235–237. doi: 10.1126/science.7904381. [DOI] [PubMed] [Google Scholar]
  2. Allred D. R., Hines S. A., Ahrens K. P. Isolate-specific parasite antigens of the Babesia bovis-infected erythrocyte surface. Mol Biochem Parasitol. 1993 Jul;60(1):121–132. doi: 10.1016/0166-6851(93)90035-v. [DOI] [PubMed] [Google Scholar]
  3. Bouharoun-Tayoun H., Attanath P., Sabchareon A., Chongsuphajaisiddhi T., Druilhe P. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med. 1990 Dec 1;172(6):1633–1641. doi: 10.1084/jem.172.6.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bouharoun-Tayoun H., Druilhe P. Plasmodium falciparum malaria: evidence for an isotype imbalance which may be responsible for delayed acquisition of protective immunity. Infect Immun. 1992 Apr;60(4):1473–1481. doi: 10.1128/iai.60.4.1473-1481.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brake D. A., Long C. A., Weidanz W. P. Adoptive protection against Plasmodium chabaudi adami malaria in athymic nude mice by a cloned T cell line. J Immunol. 1988 Mar 15;140(6):1989–1993. [PubMed] [Google Scholar]
  6. Brown W. C., Palmer G. H., McElwain T. F., Hines S. A., Dobbelaere D. A. Babesia bovis: characterization of the T helper cell response against the 42-kDa merozoite surface antigen (MSA-1) in cattle. Exp Parasitol. 1993 Aug;77(1):97–110. doi: 10.1006/expr.1993.1065. [DOI] [PubMed] [Google Scholar]
  7. Brown W. C., Rice-Ficht A. C. Use of helper T cells to identify potential vaccine antigens of Babesia bovis. Parasitol Today. 1994 Apr;10(4):145–149. doi: 10.1016/0169-4758(94)90265-8. [DOI] [PubMed] [Google Scholar]
  8. Coffman R. L., Seymour B. W., Lebman D. A., Hiraki D. D., Christiansen J. A., Shrader B., Cherwinski H. M., Savelkoul H. F., Finkelman F. D., Bond M. W. The role of helper T cell products in mouse B cell differentiation and isotype regulation. Immunol Rev. 1988 Feb;102:5–28. doi: 10.1111/j.1600-065x.1988.tb00739.x. [DOI] [PubMed] [Google Scholar]
  9. Cross G. A. Glycolipid anchoring of plasma membrane proteins. Annu Rev Cell Biol. 1990;6:1–39. doi: 10.1146/annurev.cb.06.110190.000245. [DOI] [PubMed] [Google Scholar]
  10. Dolan S. A., Miller L. H., Wellems T. E. Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum. J Clin Invest. 1990 Aug;86(2):618–624. doi: 10.1172/JCI114753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hines S. A., McElwain T. F., Buening G. M., Palmer G. H. Molecular characterization of Babesia bovis merozoite surface proteins bearing epitopes immunodominant in protected cattle. Mol Biochem Parasitol. 1989 Nov;37(1):1–9. doi: 10.1016/0166-6851(89)90096-0. [DOI] [PubMed] [Google Scholar]
  12. Hines S. A., Palmer G. H., Jasmer D. P., McGuire T. C., McElwain T. F. Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Mol Biochem Parasitol. 1992 Oct;55(1-2):85–94. doi: 10.1016/0166-6851(92)90129-8. [DOI] [PubMed] [Google Scholar]
  13. Hollingshead S. K., Fischetti V. A., Scott J. R. Size variation in group A streptococcal M protein is generated by homologous recombination between intragenic repeats. Mol Gen Genet. 1987 May;207(2-3):196–203. doi: 10.1007/BF00331578. [DOI] [PubMed] [Google Scholar]
  14. Jasmer D. P., Reduker D. W., Hines S. A., Perryman L. E., McGuire T. C. Surface epitope localization and gene structure of a Babesia bovis 44-kilodalton variable merozoite surface antigen. Mol Biochem Parasitol. 1992 Oct;55(1-2):75–83. doi: 10.1016/0166-6851(92)90128-7. [DOI] [PubMed] [Google Scholar]
  15. Khusmith S., Charoenvit Y., Kumar S., Sedegah M., Beaudoin R. L., Hoffman S. L. Protection against malaria by vaccination with sporozoite surface protein 2 plus CS protein. Science. 1991 May 3;252(5006):715–718. doi: 10.1126/science.1827210. [DOI] [PubMed] [Google Scholar]
  16. Levy M. G., Ristic M. Babesia bovis: continuous cultivation in a microaerophilous stationary phase culture. Science. 1980 Mar 14;207(4436):1218–1220. doi: 10.1126/science.7355284. [DOI] [PubMed] [Google Scholar]
  17. Mahoney D. F. Bovine babesiosis: the passive immunization of calves against Babesia argentina with special reference to the role of complement fixing antibodies. Exp Parasitol. 1967 Feb;20(1):119–124. doi: 10.1016/0014-4894(67)90029-x. [DOI] [PubMed] [Google Scholar]
  18. Mahoney D. F., Kerr J. D., Goodger B. V., Wright I. G. The immune response of cattle to Babesia bovis (syn. B. argentina). Studies on the nature and specificity of protection. Int J Parasitol. 1979 Aug;9(4):297–306. doi: 10.1016/0020-7519(79)90078-x. [DOI] [PubMed] [Google Scholar]
  19. Mahoney D. F., Wright I. G., Goodger B. V. Immunity in cattle to Babesia bovis after single infections with parasites of various origin. Aust Vet J. 1979 Jan;55(1):10–12. doi: 10.1111/j.1751-0813.1979.tb09535.x. [DOI] [PubMed] [Google Scholar]
  20. McElwain T. F., Perryman L. E., Davis W. C., McGuire T. C. Antibodies define multiple proteins with epitopes exposed on the surface of live Babesia bigemina merozoites. J Immunol. 1987 Apr 1;138(7):2298–2304. [PubMed] [Google Scholar]
  21. McElwain T. F., Perryman L. E., Musoke A. J., McGuire T. C. Molecular characterization and immunogenicity of neutralization-sensitive Babesia bigemina merozoite surface proteins. Mol Biochem Parasitol. 1991 Aug;47(2):213–222. doi: 10.1016/0166-6851(91)90181-5. [DOI] [PubMed] [Google Scholar]
  22. McGuire T. C., Musoke A. J., Kurtti T. Functional properties of bovine IgG1 and IgG2: interaction with complement, macrophages, neutrophils and skin. Immunology. 1979 Oct;38(2):249–256. [PMC free article] [PubMed] [Google Scholar]
  23. McGuire T. C., Palmer G. H., Goff W. L., Johnson M. I., Davis W. C. Common and isolate-restricted antigens of Anaplasma marginale detected with monoclonal antibodies. Infect Immun. 1984 Sep;45(3):697–700. doi: 10.1128/iai.45.3.697-700.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  25. Palmer G. H., McElwain T. F., Perryman L. E., Davis W. C., Reduker D. R., Jasmer D. P., Shkap V., Pipano E., Goff W. L., McGuire T. C. Strain variation of Babesia bovis merozoite surface-exposed epitopes. Infect Immun. 1991 Sep;59(9):3340–3342. doi: 10.1128/iai.59.9.3340-3342.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Perkins M. E. Rhoptry organelles of apicomplexan parasites. Parasitol Today. 1992 Jan;8(1):28–32. doi: 10.1016/0169-4758(92)90308-o. [DOI] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saul A. Kinetic constraints on the development of a malaria vaccine. Parasite Immunol. 1987 Jan;9(1):1–9. doi: 10.1111/j.1365-3024.1987.tb00483.x. [DOI] [PubMed] [Google Scholar]
  29. Shompole S., McElwain T. F., Jasmer D. P., Hines S. A., Katende J., Musoke A. J., Rurangirwa F. R., McGuire T. C. Identification of Babesia bigemina infected erythrocyte surface antigens containing epitopes conserved among strains. Parasite Immunol. 1994 Mar;16(3):119–127. doi: 10.1111/j.1365-3024.1994.tb00331.x. [DOI] [PubMed] [Google Scholar]
  30. Siegele D. A., Hu J. C., Walter W. A., Gross C. A. Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase. J Mol Biol. 1989 Apr 20;206(4):591–603. doi: 10.1016/0022-2836(89)90568-8. [DOI] [PubMed] [Google Scholar]
  31. Suarez C. E., McElwain T. F., Stephens E. B., Mishra V. S., Palmer G. H. Sequence conservation among merozoite apical complex proteins of Babesia bovis, Babesia bigemina and other apicomplexa. Mol Biochem Parasitol. 1991 Dec;49(2):329–332. doi: 10.1016/0166-6851(91)90077-j. [DOI] [PubMed] [Google Scholar]
  32. Suarez C. E., Palmer G. H., Jasmer D. P., Hines S. A., Perryman L. E., McElwain T. F. Characterization of the gene encoding a 60-kilodalton Babesia bovis merozoite protein with conserved and surface exposed epitopes. Mol Biochem Parasitol. 1991 May;46(1):45–52. doi: 10.1016/0166-6851(91)90197-e. [DOI] [PubMed] [Google Scholar]
  33. Suarez C. E., Thompson S. M., McElwain T. F., Hines S. A., Palmer G. H. Conservation of oligopeptide motifs in rhoptry proteins from different genera of erythroparasitic protozoa. Exp Parasitol. 1994 Mar;78(2):246–251. doi: 10.1006/expr.1994.1025. [DOI] [PubMed] [Google Scholar]
  34. Taylor-Robinson A. W., Phillips R. S., Severn A., Moncada S., Liew F. Y. The role of TH1 and TH2 cells in a rodent malaria infection. Science. 1993 Jun 25;260(5116):1931–1934. doi: 10.1126/science.8100366. [DOI] [PubMed] [Google Scholar]
  35. Tetzlaff C. L., Rice-Ficht A. C., Woods V. M., Brown W. C. Induction of proliferative responses of T cells from Babesia bovis-immune cattle with a recombinant 77-kilodalton merozoite protein (Bb-1). Infect Immun. 1992 Feb;60(2):644–652. doi: 10.1128/iai.60.2.644-652.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Waki S., Uehara S., Kanbe K., Ono K., Suzuki M., Nariuchi H. The role of T cells in pathogenesis and protective immunity to murine malaria. Immunology. 1992 Apr;75(4):646–651. [PMC free article] [PubMed] [Google Scholar]
  37. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES