Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Feb;63(2):486–497. doi: 10.1128/iai.63.2.486-497.1995

CD14 is not involved in Rhodobacter sphaeroides diphosphoryl lipid A inhibition of tumor necrosis factor alpha and nitric oxide induction by taxol in murine macrophages.

F Kirikae 1, T Kirikae 1, N Qureshi 1, K Takayama 1, D C Morrison 1, M Nakano 1
PMCID: PMC173021  PMID: 7529746

Abstract

Taxol, a microtubule stabilizer with anticancer activity, mimics the actions of lipopolysaccharide (LPS) on murine macrophages in vitro. Recently, it was shown that taxol-induced macrophage activation was inhibited by the LPS antagonist Rhodobacter sphaeroides diphosphoryl lipid A (RsDPLA). To investigate the mechanisms of taxol-induced macrophage activation, the present study focused on the interaction of LPS, RsDPLA, and taxol in the activation of and binding to macrophages. Taxol alone induced murine C3H/He macrophages to secrete tumor necrosis factor alpha (TNF) and to produce nitric oxide (NO) with kinetics similar to that of LPS. Macrophages from LPS-hyporesponsive C3H/HeJ mice, in contrast, did not yield any detectable TNF and NO production in response to LPS or taxol. RsDPLA inhibited taxol-induced TNF and NO production from C3H/He macrophages in a dose-dependent manner. The inhibition by RsDPLA was specific for LPS and taxol in that RsDPLA did not inhibit heat-killed Listeria monocytogenes- or zymosan-induced TNF production. Polymyxin B blocked the inhibitory effect of RsDPLA on taxol-induced TNF production. The inhibitory activity of RsDPLA appeared to be reversible since macrophages still responded to taxol in inducing TNF production after the RsDPLA was washed out with phosphate-buffered saline prior to the addition of taxol. Taxol-induced TNF production was not inhibited by colchicine, vinblastine, or 10-deacetylbaccatine III. A mutant cell line, J7.DEF3, defective in expression of a CD14 antigen, responded equally well to taxol by producing TNF as did the parent J774.1 cells. This suggested that the activation of macrophages by taxol does not require CD14. Taxol-induced TNF production by the mutant cells was also inhibited by RsDPLA. 125I-labeled LPS and 3H-labeled taxol was reported to bind to J774.1 cells predominantly via CD14 and microtubules, respectively. The binding of 125I-labeled LPS to J7.DEF3 cells was about 30 to 40% of that to J774.1 cells. The binding of 125I-LPS to J774.1 cells was inhibited by unlabeled LPS and RsDPLA but not by taxol. On the other hand, 3H-labeled taxol bound to both J774.1 cells and J7.DEF3 cells in similar time- and dose-dependent manners. The binding of [3H]taxol to these cells was inhibited by taxol but not by LPS or RsDPLA. Although the binding studies failed to examine cross competition for binding to macrophages, a possible explanation of these results is that LPS, RsDPLA, and taxol share the same molecule(s) on murine macrophages for their functional receptor(s), which is neither CD14 nor tubulin.

Full Text

The Full Text of this article is available as a PDF (375.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bogdan C., Ding A. Taxol, a microtubule-stabilizing antineoplastic agent, induces expression of tumor necrosis factor alpha and interleukin-1 in macrophages. J Leukoc Biol. 1992 Jul;52(1):119–121. doi: 10.1002/jlb.52.1.119. [DOI] [PubMed] [Google Scholar]
  2. Bright S. W., Chen T. Y., Flebbe L. M., Lei M. G., Morrison D. C. Generation and characterization of hamster-mouse hybridomas secreting monoclonal antibodies with specificity for lipopolysaccharide receptor. J Immunol. 1990 Jul 1;145(1):1–7. [PubMed] [Google Scholar]
  3. Chen T. Y., Bright S. W., Pace J. L., Russell S. W., Morrison D. C. Induction of macrophage-mediated tumor cytotoxicity by a hamster monoclonal antibody with specificity for lipopolysaccharide receptor. J Immunol. 1990 Jul 1;145(1):8–12. [PubMed] [Google Scholar]
  4. Ding A. H., Porteu F., Sanchez E., Nathan C. F. Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science. 1990 Apr 20;248(4953):370–372. doi: 10.1126/science.1970196. [DOI] [PubMed] [Google Scholar]
  5. Ding A., Sanchez E., Tancinco M., Nathan C. Interactions of bacterial lipopolysaccharide with microtubule proteins. J Immunol. 1992 May 1;148(9):2853–2858. [PubMed] [Google Scholar]
  6. Frey E. A., Miller D. S., Jahr T. G., Sundan A., Bazil V., Espevik T., Finlay B. B., Wright S. D. Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med. 1992 Dec 1;176(6):1665–1671. doi: 10.1084/jem.176.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Golenbock D. T., Hampton R. Y., Qureshi N., Takayama K., Raetz C. R. Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J Biol Chem. 1991 Oct 15;266(29):19490–19498. [PubMed] [Google Scholar]
  8. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  9. Guéritte-Voegelein F., Guénard D., Lavelle F., Le Goff M. T., Mangatal L., Potier P. Relationships between the structure of taxol analogues and their antimitotic activity. J Med Chem. 1991 Mar;34(3):992–998. doi: 10.1021/jm00107a017. [DOI] [PubMed] [Google Scholar]
  10. Hampton R. Y., Golenbock D. T., Penman M., Krieger M., Raetz C. R. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature. 1991 Jul 25;352(6333):342–344. doi: 10.1038/352342a0. [DOI] [PubMed] [Google Scholar]
  11. Kirikae T., Kirikae F., Schade F. U., Yoshida M., Kondo S., Hisatsune K., Nishikawa S., Rietschel E. T. Detection of lipopolysaccharide-binding proteins on membranes of murine lymphocyte and macrophage-like cell lines. FEMS Microbiol Immunol. 1991 Nov;3(6):327–336. doi: 10.1111/j.1574-6968.1991.tb04257.x. [DOI] [PubMed] [Google Scholar]
  12. Kirikae T., Schade F. U., Kirikae F., Qureshi N., Takayama K., Rietschel E. T. Diphosphoryl lipid A derived from the lipopolysaccharide (LPS) of Rhodobacter sphaeroides ATCC 17023 is a potent competitive LPS inhibitor in murine macrophage-like J774.1 cells. FEMS Immunol Med Microbiol. 1994 Sep;9(3):237–243. doi: 10.1111/j.1574-695X.1994.tb00499.x. [DOI] [PubMed] [Google Scholar]
  13. Kirikae T., Schade F. U., Kirikae F., Rietschel E. T., Morrison D. C. Isolation of a macrophage-like cell line defective in binding of lipopolysaccharide. Influence of serum and lipopolysaccharide chain length on macrophage activation. J Immunol. 1993 Sep 1;151(5):2742–2752. [PubMed] [Google Scholar]
  14. Kirikae T., Schade F. U., Zähringer U., Kirikae F., Brade H., Kusumoto S., Kusama T., Rietschel E. T. The significance of the hydrophilic backbone and the hydrophobic fatty acid regions of lipid A for macrophage binding and cytokine induction. FEMS Immunol Med Microbiol. 1994 Jan;8(1):13–26. doi: 10.1111/j.1574-695X.1994.tb00421.x. [DOI] [PubMed] [Google Scholar]
  15. Kumar N. Taxol-induced polymerization of purified tubulin. Mechanism of action. J Biol Chem. 1981 Oct 25;256(20):10435–10441. [PubMed] [Google Scholar]
  16. Lei M. G., Morrison D. C. Specific endotoxic lipopolysaccharide-binding proteins on murine splenocytes. I. Detection of lipopolysaccharide-binding sites on splenocytes and splenocyte subpopulations. J Immunol. 1988 Aug 1;141(3):996–1005. [PubMed] [Google Scholar]
  17. Lei M. G., Morrison D. C. Specific endotoxic lipopolysaccharide-binding proteins on murine splenocytes. II. Membrane localization and binding characteristics. J Immunol. 1988 Aug 1;141(3):1006–1011. [PubMed] [Google Scholar]
  18. Lei M. G., Qureshi N., Morrison D. C. Lipopolysaccharide (LPS) binding to 73-kDa and 38-kDa surface proteins on lymphoreticular cells: preferential inhibition of LPS binding to the former by Rhodopseudomonas sphaeroides lipid A. Immunol Lett. 1993 Jun;36(3):245–250. doi: 10.1016/0165-2478(93)90096-k. [DOI] [PubMed] [Google Scholar]
  19. Lynn W. A., Golenbock D. T. Lipopolysaccharide antagonists. Immunol Today. 1992 Jul;13(7):271–276. doi: 10.1016/0167-5699(92)90009-V. [DOI] [PubMed] [Google Scholar]
  20. Manfredi J. J., Parness J., Horwitz S. B. Taxol binds to cellular microtubules. J Cell Biol. 1982 Sep;94(3):688–696. doi: 10.1083/jcb.94.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Manthey C. L., Brandes M. E., Perera P. Y., Vogel S. N. Taxol increases steady-state levels of lipopolysaccharide-inducible genes and protein-tyrosine phosphorylation in murine macrophages. J Immunol. 1992 Oct 1;149(7):2459–2465. [PubMed] [Google Scholar]
  22. Manthey C. L., Qureshi N., Stütz P. L., Vogel S. N. Lipopolysaccharide antagonists block taxol-induced signaling in murine macrophages. J Exp Med. 1993 Aug 1;178(2):695–702. doi: 10.1084/jem.178.2.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Morrison D. C., Jacobs D. M. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry. 1976 Oct;13(10):813–818. doi: 10.1016/0019-2791(76)90181-6. [DOI] [PubMed] [Google Scholar]
  24. Morrison D. C., Lei M. G., Kirikae T., Chen T. Y. Endotoxin receptors on mammalian cells. Immunobiology. 1993 Apr;187(3-5):212–226. doi: 10.1016/S0171-2985(11)80340-2. [DOI] [PubMed] [Google Scholar]
  25. Morrison D. C., Ryan J. L. Endotoxins and disease mechanisms. Annu Rev Med. 1987;38:417–432. doi: 10.1146/annurev.me.38.020187.002221. [DOI] [PubMed] [Google Scholar]
  26. Obayashi T., Tamura H., Tanaka S., Ohki M., Takahashi S., Arai M., Masuda M., Kawai T. A new chromogenic endotoxin-specific assay using recombined limulus coagulation enzymes and its clinical applications. Clin Chim Acta. 1985 Jun 30;149(1):55–65. doi: 10.1016/0009-8981(85)90273-6. [DOI] [PubMed] [Google Scholar]
  27. Parness J., Horwitz S. B. Taxol binds to polymerized tubulin in vitro. J Cell Biol. 1981 Nov;91(2 Pt 1):479–487. doi: 10.1083/jcb.91.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pugin J., Schürer-Maly C. C., Leturcq D., Moriarty A., Ulevitch R. J., Tobias P. S. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2744–2748. doi: 10.1073/pnas.90.7.2744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Qureshi N., Honovich J. P., Hara H., Cotter R. J., Takayama K. Location of fatty acids in lipid A obtained from lipopolysaccharide of Rhodopseudomonas sphaeroides ATCC 17023. J Biol Chem. 1988 Apr 25;263(12):5502–5504. [PubMed] [Google Scholar]
  30. Qureshi N., Takayama K., Kurtz R. Diphosphoryl lipid A obtained from the nontoxic lipopolysaccharide of Rhodopseudomonas sphaeroides is an endotoxin antagonist in mice. Infect Immun. 1991 Jan;59(1):441–444. doi: 10.1128/iai.59.1.441-444.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Qureshi N., Takayama K., Meyer K. C., Kirkland T. N., Bush C. A., Chen L., Wang R., Cotter R. J. Chemical reduction of 3-oxo and unsaturated groups in fatty acids of diphosphoryl lipid A from the lipopolysaccharide of Rhodopseudomonas sphaeroides. Comparison of biological properties before and after reduction. J Biol Chem. 1991 Apr 5;266(10):6532–6538. [PubMed] [Google Scholar]
  32. Raetz C. R., Ulevitch R. J., Wright S. D., Sibley C. H., Ding A., Nathan C. F. Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J. 1991 Sep;5(12):2652–2660. doi: 10.1096/fasebj.5.12.1916089. [DOI] [PubMed] [Google Scholar]
  33. Rao S., Horwitz S. B., Ringel I. Direct photoaffinity labeling of tubulin with taxol. J Natl Cancer Inst. 1992 May 20;84(10):785–788. doi: 10.1093/jnci/84.10.785. [DOI] [PubMed] [Google Scholar]
  34. Rietschel E. T., Kirikae T., Schade F. U., Mamat U., Schmidt G., Loppnow H., Ulmer A. J., Zähringer U., Seydel U., Di Padova F. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994 Feb;8(2):217–225. doi: 10.1096/fasebj.8.2.8119492. [DOI] [PubMed] [Google Scholar]
  35. Roeder D. J., Lei M. G., Morrison D. C. Endotoxic-lipopolysaccharide-specific binding proteins on lymphoid cells of various animal species: association with endotoxin susceptibility. Infect Immun. 1989 Apr;57(4):1054–1058. doi: 10.1128/iai.57.4.1054-1058.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ruco L. P., Meltzer M. S., Rosenstreich D. L. Macrophage activation for tumor cytotoxicity: control of macrophage tumoricidal capacity by the LPS gene. J Immunol. 1978 Aug;121(2):543–548. [PubMed] [Google Scholar]
  37. Ruff M. R., Gifford G. E. Purification and physico-chemical characterization of rabbit tumor necrosis factor. J Immunol. 1980 Oct;125(4):1671–1677. [PubMed] [Google Scholar]
  38. Salimath P. V., Weckesser J., Strittmatter W., Mayer H. Structural studies on the non-toxic lipid A from Rhodopseudomonas sphaeroides ATCC 17023. Eur J Biochem. 1983 Oct 17;136(1):195–200. doi: 10.1111/j.1432-1033.1983.tb07726.x. [DOI] [PubMed] [Google Scholar]
  39. Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  40. Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., Tobias P. S., Ulevitch R. J. Structure and function of lipopolysaccharide binding protein. Science. 1990 Sep 21;249(4975):1429–1431. doi: 10.1126/science.2402637. [DOI] [PubMed] [Google Scholar]
  42. Stefanová I., Corcoran M. L., Horak E. M., Wahl L. M., Bolen J. B., Horak I. D. Lipopolysaccharide induces activation of CD14-associated protein tyrosine kinase p53/56lyn. J Biol Chem. 1993 Oct 5;268(28):20725–20728. [PubMed] [Google Scholar]
  43. Stefanová I., Horejsí V., Ansotegui I. J., Knapp W., Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science. 1991 Nov 15;254(5034):1016–1019. doi: 10.1126/science.1719635. [DOI] [PubMed] [Google Scholar]
  44. Strittmatter W., Weckesser J., Salimath P. V., Galanos C. Nontoxic lipopolysaccharide from Rhodopseudomonas sphaeroides ATCC 17023. J Bacteriol. 1983 Jul;155(1):153–158. doi: 10.1128/jb.155.1.153-158.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sultzer B. M. Genetic control of leucocyte responses to endotoxin. Nature. 1968 Sep 21;219(5160):1253–1254. doi: 10.1038/2191253a0. [DOI] [PubMed] [Google Scholar]
  46. Takayama K., Qureshi N., Beutler B., Kirkland T. N. Diphosphoryl lipid A from Rhodopseudomonas sphaeroides ATCC 17023 blocks induction of cachectin in macrophages by lipopolysaccharide. Infect Immun. 1989 Apr;57(4):1336–1338. doi: 10.1128/iai.57.4.1336-1338.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ulevitch R. J. The preparation and characterization of a radioiodinated bacterial lipopolysaccharide. Immunochemistry. 1978 Mar;15(3):157–164. doi: 10.1016/0161-5890(78)90144-x. [DOI] [PubMed] [Google Scholar]
  48. Wani M. C., Taylor H. L., Wall M. E., Coggon P., McPhail A. T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971 May 5;93(9):2325–2327. doi: 10.1021/ja00738a045. [DOI] [PubMed] [Google Scholar]
  49. Wilson L. Microtubules as drug receptors: pharmacological properties of microtubule protein. Ann N Y Acad Sci. 1975 Jun 30;253:213–231. doi: 10.1111/j.1749-6632.1975.tb19201.x. [DOI] [PubMed] [Google Scholar]
  50. Wright S. D., Jong M. T. Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide. J Exp Med. 1986 Dec 1;164(6):1876–1888. doi: 10.1084/jem.164.6.1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wright S. D. Multiple receptors for endotoxin. Curr Opin Immunol. 1991 Feb;3(1):83–90. doi: 10.1016/0952-7915(91)90082-c. [DOI] [PubMed] [Google Scholar]
  52. Wright S. D., Ramos R. A., Patel M., Miller D. S. Septin: a factor in plasma that opsonizes lipopolysaccharide-bearing particles for recognition by CD14 on phagocytes. J Exp Med. 1992 Sep 1;176(3):719–727. doi: 10.1084/jem.176.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]
  54. Wright S. D., Tobias P. S., Ulevitch R. J., Ramos R. A. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med. 1989 Oct 1;170(4):1231–1241. doi: 10.1084/jem.170.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES