Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Feb;63(2):522–527. doi: 10.1128/iai.63.2.522-527.1995

Human lipopolysaccharide-binding protein potentiates bactericidal activity of human bactericidal/permeability-increasing protein.

A H Horwitz 1, R E Williams 1, G Nowakowski 1
PMCID: PMC173026  PMID: 7822017

Abstract

Human bactericidal/permeability-increasing protein (BPI) from neutrophils and a recombinant amino-terminal fragment, rBPI23, bind to and are cytotoxic for gram-negative bacteria both in vitro and ex vivo in plasma or whole blood. To function in vivo as an extracellular bactericidal agent, rBPI23 must act in the presence of the lipopolysaccharide-binding protein (LBP), which also binds to but has no reported cytotoxicity for gram-negative bacteria. LBP, which is present at 5 to 10 micrograms/ml in healthy humans and at much higher levels in septic patients, mediates proinflammatory host responses to gram-negative infection. On the basis of these previous observations, we have examined the effect of recombinant LBP (rLBP) on the bactericidal activity of rBPI23 against Escherichia coli J5 in vitro. Physiological concentrations of rLBP (5 to 20 micrograms/ml) had little or no bactericidal activity but reduced by up to approximately 10,000-fold the concentration of BPI required for bactericidal or related activities in assays which measure (i) cell viability as CFUs on solid media or growth in broth culture and (ii) protein synthesis following treatment with BPI. LBP also potentiated BPI-mediated permeabilization of the E. coli outer membrane to actinomycin D by about 100-fold but had no permeabilizing activity of its own. Under optimal conditions for potentiation, fewer than 100 BPI molecules were required to kill a single E. coli J5 bacterium.

Full Text

The Full Text of this article is available as a PDF (230.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ammons W. S., Kung A. H. Recombinant amino terminal fragment of bactericidal/permeability-increasing protein prevents hemodynamic responses to endotoxin. Circ Shock. 1993 Nov;41(3):176–184. [PubMed] [Google Scholar]
  2. Calvano S. E., Thompson W. A., Marra M. N., Coyle S. M., de Riesthal H. F., Trousdale R. K., Barie P. S., Scott R. W., Moldawer L. L., Lowry S. F. Changes in polymorphonuclear leukocyte surface and plasma bactericidal/permeability-increasing protein and plasma lipopolysaccharide binding protein during endotoxemia or sepsis. Arch Surg. 1994 Feb;129(2):220–226. doi: 10.1001/archsurg.1994.01420260116016. [DOI] [PubMed] [Google Scholar]
  3. Corradin S. B., Mauël J., Gallay P., Heumann D., Ulevitch R. J., Tobias P. S. Enhancement of murine macrophage binding of and response to bacterial lipopolysaccharide (LPS) by LPS-binding protein. J Leukoc Biol. 1992 Oct;52(4):363–368. doi: 10.1002/jlb.52.4.363. [DOI] [PubMed] [Google Scholar]
  4. Gazzano-Santoro H., Mészáros K., Birr C., Carroll S. F., Theofan G., Horwitz A. H., Lim E., Aberle S., Kasler H., Parent J. B. Competition between rBPI23, a recombinant fragment of bactericidal/permeability-increasing protein, and lipopolysaccharide (LPS)-binding protein for binding to LPS and gram-negative bacteria. Infect Immun. 1994 Apr;62(4):1185–1191. doi: 10.1128/iai.62.4.1185-1191.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gazzano-Santoro H., Parent J. B., Grinna L., Horwitz A., Parsons T., Theofan G., Elsbach P., Weiss J., Conlon P. J. High-affinity binding of the bactericidal/permeability-increasing protein and a recombinant amino-terminal fragment to the lipid A region of lipopolysaccharide. Infect Immun. 1992 Nov;60(11):4754–4761. doi: 10.1128/iai.60.11.4754-4761.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kohn F. R., Ammons W. S., Horwitz A., Grinna L., Theofan G., Weickmann J., Kung A. H. Protective effect of a recombinant amino-terminal fragment of bactericidal/permeability-increasing protein in experimental endotoxemia. J Infect Dis. 1993 Nov;168(5):1307–1310. doi: 10.1093/infdis/168.5.1307. [DOI] [PubMed] [Google Scholar]
  7. Levy O., Ooi C. E., Weiss J., Lehrer R. I., Elsbach P. Individual and synergistic effects of rabbit granulocyte proteins on Escherichia coli. J Clin Invest. 1994 Aug;94(2):672–682. doi: 10.1172/JCI117384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Levy O., Weiss J., Zarember K., Ooi C. E., Elsbach P. Antibacterial 15-kDa protein isoforms (p15s) are members of a novel family of leukocyte proteins. J Biol Chem. 1993 Mar 15;268(8):6058–6063. [PubMed] [Google Scholar]
  9. Little R. G., Kelner D. N., Lim E., Burke D. J., Conlon P. J. Functional domains of recombinant bactericidal/permeability increasing protein (rBPI23). J Biol Chem. 1994 Jan 21;269(3):1865–1872. [PubMed] [Google Scholar]
  10. Mannion B. A., Kalatzis E. S., Weiss J., Elsbach P. Preferential binding of the neutrophil cytoplasmic granule-derived bactericidal/permeability increasing protein to target bacteria. Implications and use as a means of purification. J Immunol. 1989 Apr 15;142(8):2807–2812. [PubMed] [Google Scholar]
  11. Mannion B. A., Weiss J., Elsbach P. Separation of sublethal and lethal effects of the bactericidal/permeability increasing protein on Escherichia coli. J Clin Invest. 1990 Mar;85(3):853–860. doi: 10.1172/JCI114512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marra M. N., Wilde C. G., Collins M. S., Snable J. L., Thornton M. B., Scott R. W. The role of bactericidal/permeability-increasing protein as a natural inhibitor of bacterial endotoxin. J Immunol. 1992 Jan 15;148(2):532–537. [PubMed] [Google Scholar]
  13. Martin T. R., Mathison J. C., Tobias P. S., Letúrcq D. J., Moriarty A. M., Maunder R. J., Ulevitch R. J. Lipopolysaccharide binding protein enhances the responsiveness of alveolar macrophages to bacterial lipopolysaccharide. Implications for cytokine production in normal and injured lungs. J Clin Invest. 1992 Dec;90(6):2209–2219. doi: 10.1172/JCI116106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mathison J. C., Tobias P. S., Wolfson E., Ulevitch R. J. Plasma lipopolysaccharide (LPS)-binding protein. A key component in macrophage recognition of gram-negative LPS. J Immunol. 1992 Jul 1;149(1):200–206. [PubMed] [Google Scholar]
  15. Mészáros K., Aberle S., Dedrick R., Machovich R., Horwitz A., Birr C., Theofan G., Parent J. B. Monocyte tissue factor induction by lipopolysaccharide (LPS): dependence on LPS-binding protein and CD14, and inhibition by a recombinant fragment of bactericidal/permeability-increasing protein. Blood. 1994 May 1;83(9):2516–2525. [PubMed] [Google Scholar]
  16. Mészáros K., Parent J. B., Gazzano-Santoro H., Little R., Horwitz A., Parsons T., Theofan G., Grinna L., Weickmann J., Elsbach P. A recombinant amino terminal fragment of bactericidal/permeability-increasing protein inhibits the induction of leukocyte responses by LPS. J Leukoc Biol. 1993 Dec;54(6):558–563. doi: 10.1002/jlb.54.6.558. [DOI] [PubMed] [Google Scholar]
  17. Ooi C. E., Weiss J., Elsbach P., Frangione B., Mannion B. A 25-kDa NH2-terminal fragment carries all the antibacterial activities of the human neutrophil 60-kDa bactericidal/permeability-increasing protein. J Biol Chem. 1987 Nov 5;262(31):14891–14894. [PubMed] [Google Scholar]
  18. Ooi C. E., Weiss J., Levy O., Elsbach P. Isolation of two isoforms of a novel 15-kDa protein from rabbit polymorphonuclear leukocytes that modulate the antibacterial actions of other leukocyte proteins. J Biol Chem. 1990 Sep 15;265(26):15956–15962. [PubMed] [Google Scholar]
  19. SIMON E. J., VANPRAAG D. INHIBITION OF RNA SYNTHESIS IN ESCHERICHIA COLI BY LEVORPHANOL. Proc Natl Acad Sci U S A. 1964 May;51:877–883. doi: 10.1073/pnas.51.5.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., Tobias P. S., Ulevitch R. J. Structure and function of lipopolysaccharide binding protein. Science. 1990 Sep 21;249(4975):1429–1431. doi: 10.1126/science.2402637. [DOI] [PubMed] [Google Scholar]
  21. Theofan G., Horwitz A. H., Williams R. E., Liu P. S., Chan I., Birr C., Carroll S. F., Mészáros K., Parent J. B., Kasler H. An amino-terminal fragment of human lipopolysaccharide-binding protein retains lipid A binding but not CD14-stimulatory activity. J Immunol. 1994 Apr 1;152(7):3623–3629. [PubMed] [Google Scholar]
  22. Tobias P. S., Mathison J. C., Ulevitch R. J. A family of lipopolysaccharide binding proteins involved in responses to gram-negative sepsis. J Biol Chem. 1988 Sep 25;263(27):13479–13481. [PubMed] [Google Scholar]
  23. Tobias P. S., Mathison J., Mintz D., Lee J. D., Kravchenko V., Kato K., Pugin J., Ulevitch R. J. Participation of lipopolysaccharide-binding protein in lipopolysaccharide-dependent macrophage activation. Am J Respir Cell Mol Biol. 1992 Sep;7(3):239–245. doi: 10.1165/ajrcmb/7.3.239. [DOI] [PubMed] [Google Scholar]
  24. Tobias P. S., Soldau K., Ulevitch R. J. Identification of a lipid A binding site in the acute phase reactant lipopolysaccharide binding protein. J Biol Chem. 1989 Jun 25;264(18):10867–10871. [PubMed] [Google Scholar]
  25. Tobias P. S., Ulevitch R. J. Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology. 1993 Apr;187(3-5):227–232. doi: 10.1016/S0171-2985(11)80341-4. [DOI] [PubMed] [Google Scholar]
  26. Ulevitch R. J., Tobias P. S. Recognition of endotoxin by cells leading to transmembrane signaling. Curr Opin Immunol. 1994 Feb;6(1):125–130. doi: 10.1016/0952-7915(94)90043-4. [DOI] [PubMed] [Google Scholar]
  27. Weersink A. J., van Kessel K. P., van den Tol M. E., van Strijp J. A., Torensma R., Verhoef J., Elsbach P., Weiss J. Human granulocytes express a 55-kDa lipopolysaccharide-binding protein on the cell surface that is identical to the bactericidal/permeability-increasing protein. J Immunol. 1993 Jan 1;150(1):253–263. [PubMed] [Google Scholar]
  28. Weiss J., Elsbach P., Shu C., Castillo J., Grinna L., Horwitz A., Theofan G. Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria. J Clin Invest. 1992 Sep;90(3):1122–1130. doi: 10.1172/JCI115930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weiss J., Franson C., Schmeidler K., Elsbach P. Reversible envelope effects during and after killing of Escherichia coli w by a highly-purified rabbit polymorpho-nuclear leukocyte fraction. Biochim Biophys Acta. 1976 Jun 4;436(1):154–169. doi: 10.1016/0005-2736(76)90227-3. [DOI] [PubMed] [Google Scholar]
  30. White M. L., Ma J. K., Birr C. A., Trown P. W., Carroll S. F. Measurement of bactericidal/permeability-increasing protein in human body fluids by sandwich ELISA. J Immunol Methods. 1994 Jan 3;167(1-2):227–235. doi: 10.1016/0022-1759(94)90091-4. [DOI] [PubMed] [Google Scholar]
  31. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]
  32. Wright S. D., Tobias P. S., Ulevitch R. J., Ramos R. A. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med. 1989 Oct 1;170(4):1231–1241. doi: 10.1084/jem.170.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES