Abstract
A previous study indicated that lipopolysaccharides (LPS) extracted from Actinobacillus pleuropneumoniae bind two low-molecular-mass proteins, of approximately 10 and 11 kDa, present in porcine respiratory tract secretions (M. Bélanger, D. Dubreuil, and M. Jacques, Infect. Immun. 62:868-873, 1994). In the present study, we determined the N-terminal amino acid sequences of these two proteins, which revealed high homology with the alpha and beta chains of pig hemoglobin. Some isolates of A. pleuropneumoniae were able to use hemoglobin from various animal species as well as other heme compounds as sole sources of iron for growth, while other isolates were unable to use them. Immunoelectron microscopy showed binding of pig hemoglobin at the surface of all A. pleuropneumoniae isolates as well as labeling of outer membrane blebs. We observed, using Western blotting (immunoblotting), that the lipid A-core region of LPS of all isolates was binding pig hemoglobin. Furthermore, lipid A obtained after acid hydrolysis of LPS extracted from A. pleuropneumoniae was able to bind pig hemoglobin and this binding was completely abolished by preincubation of lipid A with polymyxin B but was not inhibited by preincubation with glucosamines. Fatty acids constituting the lipid A of A. pleuropneumoniae, namely, dodecanoic acid, tetradecanoic acid, 3-hydroxytetradecanoic acid, hexadecanoic acid, and octadecanoic acid, were also binding pig hemoglobin. Our results indicate that LPS of all A. pleuropneumoniae isolates tested bind pig hemoglobin and that lipid A is involved in this binding. Our results also indicate that some A. pleuropneumoniae isolates are, in addition, able to use hemoglobin for growth. Binding of hemoglobin to LPS might represent an important means by which A. pleuropneumoniae acquires iron in vivo from hemoglobin released from erythrocytes lysed by the action of its hemolysins.
Full Text
The Full Text of this article is available as a PDF (478.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altman E., Brisson J. R., Perry M. B. Structure of the O-chain of the lipopolysaccharide of Haemophilus pleuropneumoniae serotype 1. Biochem Cell Biol. 1986 Dec;64(12):1317–1325. doi: 10.1139/o86-173. [DOI] [PubMed] [Google Scholar]
- Altman E., Griffith D. W., Perry M. B. Structural studies of the O-chains of the lipopolysaccharides produced by strains of Actinobacillus (Haemophilus) pleuropneumoniae serotype 5. Biochem Cell Biol. 1990 Nov;68(11):1268–1271. doi: 10.1139/o90-188. [DOI] [PubMed] [Google Scholar]
- Bélanger M., Dubreuil D., Harel J., Girard C., Jacques M. Role of lipopolysaccharides in adherence of Actinobacillus pleuropneumoniae to porcine tracheal rings. Infect Immun. 1990 Nov;58(11):3523–3530. doi: 10.1128/iai.58.11.3523-3530.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bélanger M., Dubreuil D., Jacques M. Proteins found within porcine respiratory tract secretions bind lipopolysaccharides of Actinobacillus pleuropneumoniae. Infect Immun. 1994 Mar;62(3):868–873. doi: 10.1128/iai.62.3.868-873.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darveau R. P., Hancock R. E. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol. 1983 Aug;155(2):831–838. doi: 10.1128/jb.155.2.831-838.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deneer H. G., Potter A. A. Effect of iron restriction on the outer membrane proteins of Actinobacillus (Haemophilus) pleuropneumoniae. Infect Immun. 1989 Mar;57(3):798–804. doi: 10.1128/iai.57.3.798-804.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dyer D. W., West E. P., Sparling P. F. Effects of serum carrier proteins on the growth of pathogenic neisseriae with heme-bound iron. Infect Immun. 1987 Sep;55(9):2171–2175. doi: 10.1128/iai.55.9.2171-2175.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fenwick B. W., Osburn B. I., Olander H. J. Isolation and biological characterization of two lipopolysaccharides and a capsular-enriched polysaccharide preparation from Haemophilus pleuropneumoniae. Am J Vet Res. 1986 Jul;47(7):1433–1441. [PubMed] [Google Scholar]
- Frey J., Bosse J. T., Chang Y. F., Cullen J. M., Fenwick B., Gerlach G. F., Gygi D., Haesebrouck F., Inzana T. J., Jansen R. Actinobacillus pleuropneumoniae RTX-toxins: uniform designation of haemolysins, cytolysins, pleurotoxin and their genes. J Gen Microbiol. 1993 Aug;139(8):1723–1728. doi: 10.1099/00221287-139-8-1723. [DOI] [PubMed] [Google Scholar]
- Gonzalez G. C., Caamano D. L., Schryvers A. B. Identification and characterization of a porcine-specific transferrin receptor in Actinobacillus pleuropneumoniae. Mol Microbiol. 1990 Jul;4(7):1173–1179. doi: 10.1111/j.1365-2958.1990.tb00692.x. [DOI] [PubMed] [Google Scholar]
- Grenier D. Hemin-binding property of Porphyromonas gingivalis outer membranes. FEMS Microbiol Lett. 1991 Jan 1;61(1):45–49. doi: 10.1016/0378-1097(91)90011-x. [DOI] [PubMed] [Google Scholar]
- Hewick R. M., Hunkapiller M. W., Hood L. E., Dreyer W. J. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem. 1981 Aug 10;256(15):7990–7997. [PubMed] [Google Scholar]
- Jensen A. E., Bertram T. A. Morphological and biochemical comparison of virulent and avirulent isolates of Haemophilus pleuropneumoniae serotype 5. Infect Immun. 1986 Feb;51(2):419–424. doi: 10.1128/iai.51.2.419-424.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- LeGendre N., Matsudaira P. Direct protein microsequencing from Immobilon-P Transfer Membrane. Biotechniques. 1988 Feb;6(2):154–159. [PubMed] [Google Scholar]
- Liggett A. D., Harrison L. R., Farrell R. L. Sequential study of lesion development in experimental haemophilus pleuropneumonia. Res Vet Sci. 1987 Mar;42(2):204–212. [PubMed] [Google Scholar]
- Lynn W. A., Golenbock D. T. Lipopolysaccharide antagonists. Immunol Today. 1992 Jul;13(7):271–276. doi: 10.1016/0167-5699(92)90009-V. [DOI] [PubMed] [Google Scholar]
- Mittal K. R., Higgins R., Larivière S., Nadeau M. Serological characterization of Actinobacillus pleuropneumoniae strains isolated from pigs in Quebec. Vet Microbiol. 1992 Sep;32(2):135–148. doi: 10.1016/0378-1135(92)90101-x. [DOI] [PubMed] [Google Scholar]
- Morioka H., Tachibana M., Machino M., Suganuma A. Polymyxin B binding sites in Escherichia coli as revealed by polymyxin B-gold labeling. J Histochem Cytochem. 1987 Feb;35(2):229–231. doi: 10.1177/35.2.3025293. [DOI] [PubMed] [Google Scholar]
- Morton D. J., Williams P. Utilization of transferrin-bound iron by Haemophilus species of human and porcine origins. FEMS Microbiol Lett. 1989 Nov;53(1-2):123–127. doi: 10.1016/0378-1097(89)90378-9. [DOI] [PubMed] [Google Scholar]
- Nielsen R. Serological characterization of Actinobacillus pleuropneumoniae strains and proposal of a new serotype: serotype 12. Acta Vet Scand. 1986;27(3):453–455. doi: 10.1186/BF03548158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niven D. F., Donga J., Archibald F. S. Responses of Haemophilus pleuropneumoniae to iron restriction: changes in the outer membrane protein profile and the removal of iron from porcine transferrin. Mol Microbiol. 1989 Aug;3(8):1083–1089. doi: 10.1111/j.1365-2958.1989.tb00258.x. [DOI] [PubMed] [Google Scholar]
- Otto B. R., Verweij-van Vught A. M., MacLaren D. M. Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol. 1992;18(3):217–233. doi: 10.3109/10408419209114559. [DOI] [PubMed] [Google Scholar]
- Paradis S. E., Dubreuil D., Rioux S., Gottschalk M., Jacques M. High-molecular-mass lipopolysaccharides are involved in Actinobacillus pleuropneumoniae adherence to porcine respiratory tract cells. Infect Immun. 1994 Aug;62(8):3311–3319. doi: 10.1128/iai.62.8.3311-3319.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payne S. M. Iron acquisition in microbial pathogenesis. Trends Microbiol. 1993 May;1(2):66–69. doi: 10.1016/0966-842x(93)90036-q. [DOI] [PubMed] [Google Scholar]
- Pettit R. K., Judd R. C. Characterization of naturally elaborated blebs from serum-susceptible and serum-resistant strains of Neisseria gonorrhoeae. Mol Microbiol. 1992 Mar;6(6):723–728. doi: 10.1111/j.1365-2958.1992.tb01521.x. [DOI] [PubMed] [Google Scholar]
- Pickett C. L., Auffenberg T., Pesci E. C., Sheen V. L., Jusuf S. S. Iron acquisition and hemolysin production by Campylobacter jejuni. Infect Immun. 1992 Sep;60(9):3872–3877. doi: 10.1128/iai.60.9.3872-3877.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pidcock K. A., Wooten J. A., Daley B. A., Stull T. L. Iron acquisition by Haemophilus influenzae. Infect Immun. 1988 Apr;56(4):721–725. doi: 10.1128/iai.56.4.721-725.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ricard M. A., Archibald F. S., Niven D. F. Isolation and identification of a putative porcine transferrin receptor from Actinobacillus pleuropneumoniae biotype 1. J Gen Microbiol. 1991 Dec;137(12):2733–2740. doi: 10.1099/00221287-137-12-2733. [DOI] [PubMed] [Google Scholar]
- Rietschel E. T., Kirikae T., Schade F. U., Mamat U., Schmidt G., Loppnow H., Ulmer A. J., Zähringer U., Seydel U., Di Padova F. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994 Feb;8(2):217–225. doi: 10.1096/fasebj.8.2.8119492. [DOI] [PubMed] [Google Scholar]
- Roth R. I. Hemoglobin enhances the production of tissue factor by endothelial cells in response to bacterial endotoxin. Blood. 1994 May 15;83(10):2860–2865. [PubMed] [Google Scholar]
- Roth R. I., Levin F. C., Levin J. Distribution of bacterial endotoxin in human and rabbit blood and effects of stroma-free hemoglobin. Infect Immun. 1993 Aug;61(8):3209–3215. doi: 10.1128/iai.61.8.3209-3215.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoebner J. A., Payne S. M. Iron-regulated hemolysin production and utilization of heme and hemoglobin by Vibrio cholerae. Infect Immun. 1988 Nov;56(11):2891–2895. doi: 10.1128/iai.56.11.2891-2895.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
- Udeze F. A., Latimer K. S., Kadis S. Role of haemophilus pleuropneumoniae lipopolysaccharide endotoxin in the pathogenesis of porcine Haemophilus pleuropneumonia. Am J Vet Res. 1987 May;48(5):768–773. [PubMed] [Google Scholar]
- Van Lenten B. J., Fogelman A. M., Haberland M. E., Edwards P. A. The role of lipoproteins and receptor-mediated endocytosis in the transport of bacterial lipopolysaccharide. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2704–2708. doi: 10.1073/pnas.83.8.2704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinberg E. D. Iron withholding: a defense against infection and neoplasia. Physiol Rev. 1984 Jan;64(1):65–102. doi: 10.1152/physrev.1984.64.1.65. [DOI] [PubMed] [Google Scholar]
- Wood D. M., Parent J. B., Gazzano-Santoro H., Lim E., Pruyne P. T., Watkins J. M., Spoor E. S., Reardan D. T., Trown P. W., Conlon P. J. Reactivity of monoclonal antibody E5 with endotoxin. I. Binding to lipid A and rough lipopolysaccharides. Circ Shock. 1992 Sep;38(1):55–62. [PubMed] [Google Scholar]
- Wright S. D. Multiple receptors for endotoxin. Curr Opin Immunol. 1991 Feb;3(1):83–90. doi: 10.1016/0952-7915(91)90082-c. [DOI] [PubMed] [Google Scholar]
