Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Feb;63(2):663–671. doi: 10.1128/iai.63.2.663-671.1995

Involvement of bactericidal factors from thrombin-stimulated platelets in clearance of adherent viridans streptococci in experimental infective endocarditis.

J Dankert 1, J van der Werff 1, S A Zaat 1, W Joldersma 1, D Klein 1, J Hess 1
PMCID: PMC173046  PMID: 7822036

Abstract

Platelets activated with thrombin release bactericidal factors. We studied the role of the susceptibility of viridans streptococci to these bactericidal factors in the development of infective endocarditis (IE). By using the experimental endocarditis rabbit model, the initial adherence and the development of IE were assessed for 10 viridans streptococcal strains differing in their susceptibilities to releasate (material released) from thrombin-activated platelets. Six strains were susceptible and four strains were resistant to these releasates. The numbers of vegetations (VGs) colonized at 5 min and 48 h after intravenous challenge with 10(4) CFU were determined. At 5 min after challenge, significantly more VGs were colonized with bacteria of the six platelet releasate-susceptible strains than with bacteria of the four releasate-resistant strains (P < 0.005). In the releasate-susceptible group of strains, the number of colonized VGs decreased significantly between 5 min and 48 h after intravenous inoculation (P < 0.001). Such a decrease was not observed with the releasate-resistant strains. As a result, the final developments of IE due to releasate-susceptible and -resistant strains were not significantly different. The releasate-susceptible strain 1 and the releasate-resistant strain 2 were selected for more detailed experiments. Rabbits were killed at 5 and 30 min and 2, 4, and 48 h after inoculation. The number of culture-positive VGs as well as the number of adherent bacteria on the individual VGs were determined. The 90% infective dose for each strain was 10(5) CFU. At low inoculum concentrations (10(3) and 10(4) CFU) a larger proportion of the inoculated bacteria of both strains was found to be adherent on VGs than at higher challenge doses. The number of culture-positive VGs as well as the number of adherent bacteria per VG decreased rapidly in the first 30 min after challenge with strain 1 but not after challenge with strain 2. Additional experiments with the platelet releasate-susceptible strain S224 and the platelet releasate-resistant stain S182 confirmed the data obtained with strains 1 and 2 and indicated that releasate-susceptible strains disappeared from the VGs with time, whereas releasate-susceptible strains persisted. In vitro studies with VGs excised 5 min after challenge with stain 1 or 2 showed that clearance of the releasate-susceptible strain 1 was not caused by complement bactericidal activity or surface phagocytosis by polymorphonuclear cells. Bacterial cells of strain 1 adherent on excised VTGs were rapidly cleared by exposure to fresh clotting blood or to releasates from thrombin-stimulated platelet suspension.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (245.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANGRIST A. A., OKA M. Pathogenesis of bacterial endocarditis. JAMA. 1963 Jan 26;183:249–252. doi: 10.1001/jama.1963.63700040009010b. [DOI] [PubMed] [Google Scholar]
  2. Beachey E. H. Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface. J Infect Dis. 1981 Mar;143(3):325–345. doi: 10.1093/infdis/143.3.325. [DOI] [PubMed] [Google Scholar]
  3. Braude L. S., Cunha-Vaz J. G., Goldberg M. F., Frenkel M., Hughes J. R. Diagnosing acute retrobulbar neuritis by vitreous fluorophotometry. Am J Ophthalmol. 1981 Jun;91(6):764–773. doi: 10.1016/0002-9394(81)90010-6. [DOI] [PubMed] [Google Scholar]
  4. Carruthers M. M., Jenkins K. E., Kabat W. J., Buranosky T. Detection of antibody to staphylococcal lipoteichoic acid with a microenzyme-linked immunosorbent assay. J Clin Microbiol. 1984 Apr;19(4):552–554. doi: 10.1128/jcm.19.4.552-554.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clawson C. C., White J. G. Platelet interaction with bacteria. II. Fate of the bacteria. Am J Pathol. 1971 Nov;65(2):381–397. [PMC free article] [PubMed] [Google Scholar]
  6. Dall L., Herndon B. Quantitative assay of glycocalyx produced by viridans group streptococci that cause endocarditis. J Clin Microbiol. 1989 Sep;27(9):2039–2041. doi: 10.1128/jcm.27.9.2039-2041.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Donaldson D. M., Tew J. G. beta-Lysin of platelet origin. Bacteriol Rev. 1977 Jun;41(2):501–513. doi: 10.1128/br.41.2.501-513.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drake T. A., Rodgers G. M., Sande M. A. Tissue factor is a major stimulus for vegetation formation in enterococcal endocarditis in rabbits. J Clin Invest. 1984 Jun;73(6):1750–1753. doi: 10.1172/JCI111383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Durack D. T., Beeson P. B. Experimental bacterial endocarditis. I. Colonization of a sterile vegetation. Br J Exp Pathol. 1972 Feb;53(1):44–49. [PMC free article] [PubMed] [Google Scholar]
  10. Durack D. T., Beeson P. B. Protective role of complement in experimental Escherichia coli endocarditis. Infect Immun. 1977 Apr;16(1):213–217. doi: 10.1128/iai.16.1.213-217.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Durack D. T., Petersdorf R. G. Chemotherapy of experimental streptococcal endocarditis. I. Comparison of commonly recommended prophylactic regimens. J Clin Invest. 1973 Mar;52(3):592–598. doi: 10.1172/JCI107220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Durack D. T., Starkebaum M. K., Petersdorf R. G. Chemotherapy of experimental streptococcal endocarditis. VI. Prevention of enterococcal endocarditis. J Lab Clin Med. 1977 Jul;90(1):171–179. [PubMed] [Google Scholar]
  13. Ferguson D. J., McColm A. A., Ryan D. M., Acred P. Experimental staphylococcal endocarditis and aortitis. Morphology of the initial colonization. Virchows Arch A Pathol Anat Histopathol. 1986;410(1):43–48. doi: 10.1007/BF00710904. [DOI] [PubMed] [Google Scholar]
  14. Freedman L. R., Valone J., Jr Experimental infective endocarditis. Prog Cardiovasc Dis. 1979 Nov-Dec;22(3):169–180. doi: 10.1016/0033-0620(79)90021-5. [DOI] [PubMed] [Google Scholar]
  15. Gould K., Ramirez-Ronda C. H., Holmes R. K., Sanford J. P. Adherence of bacteria to heart valves in vitro. J Clin Invest. 1975 Dec;56(6):1364–1370. doi: 10.1172/JCI108216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HIRSCH J. G. Comparative bactericidal activities of blood serum and plasma serum. J Exp Med. 1960 Jul 1;112:15–22. doi: 10.1084/jem.112.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haneberg B., Glette J., Talstad I., Sørnes S., Solberg C. O. In vitro release of lysozyme from monocytes and granulocytes. J Leukoc Biol. 1984 Jun;35(6):573–582. doi: 10.1002/jlb.35.6.573. [DOI] [PubMed] [Google Scholar]
  18. Hess J., Dankert J., Durack D. Significance of penicillin tolerance in vivo: prevention of experimental Streptococcus sanguis endocarditis. J Antimicrob Chemother. 1983 Jun;11(6):555–564. doi: 10.1093/jac/11.6.555. [DOI] [PubMed] [Google Scholar]
  19. Hook E. W., 3rd, Sande M. A. Role of the vegetation in experimental Streptococcus viridans endocarditis. Infect Immun. 1974 Dec;10(6):1433–1438. doi: 10.1128/iai.10.6.1433-1438.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johnson F. B., Donaldson D. M. Purification of staphylocidal beta-lysin from rabbit serum. J Bacteriol. 1968 Sep;96(3):589–595. doi: 10.1128/jb.96.3.589-595.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levison M. E., Carrizosa J., Tanphaichitra D., Schick P. K., Rubin W. Effect of aspirin on thrombogenesis and on production of experimental aortic valvular Streptococcus viridans endocarditis in rabbits. Blood. 1977 Apr;49(4):645–650. [PubMed] [Google Scholar]
  22. Lowy F. D., Chang D. S., Neuhaus E. G., Horne D. S., Tomasz A., Steigbigel N. H. Effect of penicillin on the adherence of Streptococcus sanguis in vitro and in the rabbit model of endocarditis. J Clin Invest. 1983 Mar;71(3):668–675. doi: 10.1172/JCI110813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McGowan D. A., Gillett R. Scanning electron microscopic observations of the surface of the initial lesion in experimental streptococcal endocarditis in the rabbit. Br J Exp Pathol. 1980 Apr;61(2):164–171. [PMC free article] [PubMed] [Google Scholar]
  24. Meddens M. J., Thompson J., Eulderink F., Bauer W. C., Mattie H., van Furth R. Role of granulocytes in experimental Streptococcus sanguis endocarditis. Infect Immun. 1982 Apr;36(1):325–332. doi: 10.1128/iai.36.1.325-332.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Meddens M. J., Thompson J., Leijh P. C., van Furth R. Role of granulocytes in the induction of an experimental endocarditis with a dextran-producing Streptococcus sanguis and its dextran-negative mutant. Br J Exp Pathol. 1984 Apr;65(2):257–265. [PMC free article] [PubMed] [Google Scholar]
  26. Moreillon P., Francioli P., Overholser D., Meylan P., Glauser M. P. Mechanisms of successful amoxicillin prophylaxis of experimental endocarditis due to Streptococcus intermedius. J Infect Dis. 1986 Nov;154(5):801–807. doi: 10.1093/infdis/154.5.801. [DOI] [PubMed] [Google Scholar]
  27. Ramirez-Ronda C. H. Adherence of glucan-positive and glucan-negative streptococcal strains to normal and damaged heart valves. J Clin Invest. 1978 Oct;62(4):805–814. doi: 10.1172/JCI109192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scheld W. M., Valone J. A., Sande M. A. Bacterial adherence in the pathogenesis of endocarditis. Interaction of bacterial dextran, platelets, and fibrin. J Clin Invest. 1978 May;61(5):1394–1404. doi: 10.1172/JCI109057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shuman M. A., Majerus P. W. The measurement of thrombin in clotting blood by radioimmunoassay. J Clin Invest. 1976 Nov;58(5):1249–1258. doi: 10.1172/JCI108579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shuman M. A., Tollefsen D. M., Majerus P. W. The binding of human and bovine thrombin to human platelets. Blood. 1976 Jan;47(1):43–54. [PubMed] [Google Scholar]
  31. Silvestri L. J., Craig R. A., Ingram L. O., Hoffmann E. M., Bleiweis A. S. Purification of lipoteichoic acids by using phosphatidyl choline vesicles. Infect Immun. 1978 Oct;22(1):107–118. doi: 10.1128/iai.22.1.107-118.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Solberg C. O. Protection of phagocytized bacteria against antibiotics. A new method for the evaluation of neutrophil granulocyte functions. Acta Med Scand. 1972 May;191(5):383–387. [PubMed] [Google Scholar]
  33. Sullam P. M., Frank U., Yeaman M. R., Täuber M. G., Bayer A. S., Chambers H. F. Effect of thrombocytopenia on the early course of streptococcal endocarditis. J Infect Dis. 1993 Oct;168(4):910–914. doi: 10.1093/infdis/168.4.910. [DOI] [PubMed] [Google Scholar]
  34. Tew J. G., Roberts R. R., Donaldson D. M. Release of beta-lysin from platelets by thrombin and by a factor produced in heparinized blood. Infect Immun. 1974 Jan;9(1):179–186. doi: 10.1128/iai.9.1.179-186.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thompson J., Eulderink F., Lemkes H., van Furth R. Effect of warfarin on the induction and course of experimental endocarditis. Infect Immun. 1976 Dec;14(6):1284–1289. doi: 10.1128/iai.14.6.1284-1289.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thörig L., Thompson J., Eulderink F., Emeis J. J., Van Furth R. Effects of monocytopenia and anticoagulation in experimental Streptococcus sanguis endocarditis. Br J Exp Pathol. 1980 Feb;61(1):108–116. [PMC free article] [PubMed] [Google Scholar]
  37. Weening R. S., Roos D., Loos J. A. Oxygen consumption of phagocytizing cells in human leukocyte and granulocyte preparations: a comparative study. J Lab Clin Med. 1974 Apr;83(4):570–577. [PubMed] [Google Scholar]
  38. Weksler B. B., Nachman R. L. Rabbit platelet bactericidal protein. J Exp Med. 1971 Nov 1;134(5):1114–1130. doi: 10.1084/jem.134.5.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wicken A. J., Gibbens J. W., Knox K. W. Comparative studies on the isolation of membrane lipoteichoic acid from Lactobacillus fermenti. J Bacteriol. 1973 Jan;113(1):365–372. doi: 10.1128/jb.113.1.365-372.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yeaman M. R., Puentes S. M., Norman D. C., Bayer A. S. Partial characterization and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect Immun. 1992 Mar;60(3):1202–1209. doi: 10.1128/iai.60.3.1202-1209.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES