Abstract
The squirrel monkey, Saimiri sciureus, is an important experimental model for the study of the human malaria parasite Plasmodium falciparum. A detailed karyotype analysis of four different P. falciparum strains propagated in S. sciureus was done using various subtelomeric antigen gene probes. We observed deletion of the complete RESA gene from chromosome 1 in all four strains. Interestingly, a loss of RESA was observed immediately upon adaptation to the squirrel monkey, suggesting that this DNA rearrangement is fundamental for the P. falciparum infection of S. sciureus erythrocytes. However, a RESA-specific gene probe hybridized with chromosome 1 of wild isolates from 28 different patients, indicating that this gene is maintained during infection of humans.
Full Text
The Full Text of this article is available as a PDF (200.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biggs B. A., Kemp D. J., Brown G. V. Subtelomeric chromosome deletions in field isolates of Plasmodium falciparum and their relationship to loss of cytoadherence in vitro. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2428–2432. doi: 10.1073/pnas.86.7.2428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cappai R., Kaslow D. C., Peterson M. G., Cowman A. F., Anders R. F., Kemp D. J. Cloning and analysis of the RESA-2 gene: a DNA homologue of the ring-infected erythrocyte surface antigen gene of Plasmodium falciparum. Mol Biochem Parasitol. 1992 Sep;54(2):213–221. doi: 10.1016/0166-6851(92)90113-x. [DOI] [PubMed] [Google Scholar]
- Cappai R., van Schravendijk M. R., Anders R. F., Peterson M. G., Thomas L. M., Cowman A. F., Kemp D. J. Expression of the RESA gene in Plasmodium falciparum isolate FCR3 is prevented by a subtelomeric deletion. Mol Cell Biol. 1989 Aug;9(8):3584–3587. doi: 10.1128/mcb.9.8.3584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coppel R. L., Cowman A. F., Anders R. F., Bianco A. E., Saint R. B., Lingelbach K. R., Kemp D. J., Brown G. V. Immune sera recognize on erythrocytes Plasmodium falciparum antigen composed of repeated amino acid sequences. 1984 Aug 30-Sep 5Nature. 310(5980):789–792. doi: 10.1038/310789a0. [DOI] [PubMed] [Google Scholar]
- Corcoran L. M., Thompson J. K., Walliker D., Kemp D. J. Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum. Cell. 1988 Jun 3;53(5):807–813. doi: 10.1016/0092-8674(88)90097-9. [DOI] [PubMed] [Google Scholar]
- David P. H., Hommel M., Miller L. H., Udeinya I. J., Oligino L. D. Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5075–5079. doi: 10.1073/pnas.80.16.5075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day K. P., Karamalis F., Thompson J., Barnes D. A., Peterson C., Brown H., Brown G. V., Kemp D. J. Genes necessary for expression of a virulence determinant and for transmission of Plasmodium falciparum are located on a 0.3-megabase region of chromosome 9. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8292–8296. doi: 10.1073/pnas.90.17.8292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fandeur T., Vazeux G., Mercereau-Puijalon O. The virulent Saimiri-adapted Palo Alto strain of Plasmodium falciparum does not express the ring-infected erythrocyte surface antigen. Mol Biochem Parasitol. 1993 Aug;60(2):241–248. doi: 10.1016/0166-6851(93)90135-k. [DOI] [PubMed] [Google Scholar]
- Foley M., Tilley L., Sawyer W. H., Anders R. F. The ring-infected erythrocyte surface antigen of Plasmodium falciparum associates with spectrin in the erythrocyte membrane. Mol Biochem Parasitol. 1991 May;46(1):137–147. doi: 10.1016/0166-6851(91)90207-m. [DOI] [PubMed] [Google Scholar]
- Gysin J., Aikawa M., Tourneur N., Tegoshi T. Experimental Plasmodium falciparum cerebral malaria in the squirrel monkey Saimiri sciureus. Exp Parasitol. 1992 Dec;75(4):390–398. doi: 10.1016/0014-4894(92)90252-6. [DOI] [PubMed] [Google Scholar]
- Gysin J., Dubois P., Pereira da Silva L. Protective antibodies against erythrocytic stages of Plasmodium falciparum in experimental infection of the squirrel monkey, Saimiri sciureus. Parasite Immunol. 1982 Nov;4(6):421–430. doi: 10.1111/j.1365-3024.1982.tb00453.x. [DOI] [PubMed] [Google Scholar]
- Gysin J. Relevance of the squirrel monkey as a model for experimental human malaria. Res Immunol. 1991 Oct;142(8):649–654. doi: 10.1016/0923-2494(91)90143-7. [DOI] [PubMed] [Google Scholar]
- Hinterberg K., Scherf A. PFGE: improved conditions for rapid and high-resolution separation of Plasmodium falciparum chromosomes. Parasitol Today. 1994 Jun;10(6):225–225. doi: 10.1016/0169-4758(94)90121-x. [DOI] [PubMed] [Google Scholar]
- Hommel M., David P. H., Oligino L. D. Surface alterations of erythrocytes in Plasmodium falciparum malaria. Antigenic variation, antigenic diversity, and the role of the spleen. J Exp Med. 1983 Apr 1;157(4):1137–1148. doi: 10.1084/jem.157.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura E., Mattei D., di Santi S. M., Scherf A. Genetic diversity in the major merozoite surface antigen of Plasmodium falciparum: high prevalence of a third polymorphic form detected in strains derived from malaria patients. Gene. 1990 Jul 2;91(1):57–62. doi: 10.1016/0378-1119(90)90162-k. [DOI] [PubMed] [Google Scholar]
- Kochan J., Perkins M., Ravetch J. V. A tandemly repeated sequence determines the binding domain for an erythrocyte receptor binding protein of P. falciparum. Cell. 1986 Mar 14;44(5):689–696. doi: 10.1016/0092-8674(86)90834-2. [DOI] [PubMed] [Google Scholar]
- Mattei D., Scherf A. The Pf332 gene of Plasmodium falciparum codes for a giant protein that is translocated from the parasite to the membrane of infected erythrocytes. Gene. 1992 Jan 2;110(1):71–79. doi: 10.1016/0378-1119(92)90446-v. [DOI] [PubMed] [Google Scholar]
- Perlmann P., Berzins K., Perlmann H., Troye-Blomberg M., Wahlgren M., Wåhlin B. Malaria vaccines: immunogen selection and epitope mapping. Vaccine. 1988 Apr;6(2):183–187. doi: 10.1016/s0264-410x(88)80025-2. [DOI] [PubMed] [Google Scholar]
- Pologe L. G., Ravetch J. V. A chromosomal rearrangement in a P. falciparum histidine-rich protein gene is associated with the knobless phenotype. 1986 Jul 31-Aug 6Nature. 322(6078):474–477. doi: 10.1038/322474a0. [DOI] [PubMed] [Google Scholar]
- Pologe L. G., Ravetch J. V. Large deletions result from breakage and healing of P. falciparum chromosomes. Cell. 1988 Dec 2;55(5):869–874. doi: 10.1016/0092-8674(88)90142-0. [DOI] [PubMed] [Google Scholar]
- Ruangjirachuporn W., Udomsangpetch R., Carlsson J., Drenckhahn D., Perlmann P., Berzins K. Plasmodium falciparum: analysis of the interaction of antigen Pf155/RESA with the erythrocyte membrane. Exp Parasitol. 1991 Jul;73(1):62–72. doi: 10.1016/0014-4894(91)90008-k. [DOI] [PubMed] [Google Scholar]
- Scherf A., Carter R., Petersen C., Alano P., Nelson R., Aikawa M., Mattei D., Pereira da Silva L., Leech J. Gene inactivation of Pf11-1 of Plasmodium falciparum by chromosome breakage and healing: identification of a gametocyte-specific protein with a potential role in gametogenesis. EMBO J. 1992 Jun;11(6):2293–2301. doi: 10.1002/j.1460-2075.1992.tb05288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherf A., Hilbich C., Sieg K., Mattei D., Mercereau-Puijalon O., Müller-Hill B. The 11-1 gene of Plasmodium falciparum codes for distinct fast evolving repeats. EMBO J. 1988 Apr;7(4):1129–1137. doi: 10.1002/j.1460-2075.1988.tb02922.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherf A., Mattei D. Cloning and characterization of chromosome breakpoints of Plasmodium falciparum: breakage and new telomere formation occurs frequently and randomly in subtelomeric genes. Nucleic Acids Res. 1992 Apr 11;20(7):1491–1496. doi: 10.1093/nar/20.7.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz D. C., Cantor C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. doi: 10.1016/0092-8674(84)90301-5. [DOI] [PubMed] [Google Scholar]
- Shirley M. W., Biggs B. A., Forsyth K. P., Brown H. J., Thompson J. K., Brown G. V., Kemp D. J. Chromosome 9 from independent clones and isolates of Plasmodium falciparum undergoes subtelomeric deletions with similar breakpoints in vitro. Mol Biochem Parasitol. 1990 Apr;40(1):137–145. doi: 10.1016/0166-6851(90)90087-3. [DOI] [PubMed] [Google Scholar]
- Tourneur N., Scherf A., Wahlgren M., Gysin J. The squirrel monkey as an experimental model for Plasmodium falciparum erythrocyte rosette formation. Am J Trop Med Hyg. 1992 Nov;47(5):633–642. doi: 10.4269/ajtmh.1992.47.633. [DOI] [PubMed] [Google Scholar]
- Trager W., Stanley H. S., Allen R. D., Allen N. S. Knobs on the surface of erythrocytes infected with Plasmodium falciparum: visualization by video-enhanced, differential interference contrast microscopy. J Parasitol. 1982 Apr;68(2):332–333. [PubMed] [Google Scholar]
- Triglia T., Stahl H. D., Crewther P. E., Scanlon D., Brown G. V., Anders R. F., Kemp D. J. The complete sequence of the gene for the knob-associated histidine-rich protein from Plasmodium falciparum. EMBO J. 1987 May;6(5):1413–1419. doi: 10.1002/j.1460-2075.1987.tb02382.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Triglia T., Stahl H. D., Crewther P. E., Silva A., Anders R. F., Kemp D. J. Structure of a Plasmodium falciparum gene that encodes a glutamic acid-rich protein (GARP). Mol Biochem Parasitol. 1988 Nov;31(2):199–201. doi: 10.1016/0166-6851(88)90170-3. [DOI] [PubMed] [Google Scholar]
- Triglia T., Wellems T. E., Kemp D. J. Towards a high-resolution map of the Plasmodium falciparum genome. Parasitol Today. 1992 Jul;8(7):225–229. doi: 10.1016/0169-4758(92)90118-l. [DOI] [PubMed] [Google Scholar]
- Wellems T. E., Howard R. J. Homologous genes encode two distinct histidine-rich proteins in a cloned isolate of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6065–6069. doi: 10.1073/pnas.83.16.6065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wellems T. E., Walliker D., Smith C. L., do Rosario V. E., Maloy W. L., Howard R. J., Carter R., McCutchan T. F. A histidine-rich protein gene marks a linkage group favored strongly in a genetic cross of Plasmodium falciparum. Cell. 1987 Jun 5;49(5):633–642. doi: 10.1016/0092-8674(87)90539-3. [DOI] [PubMed] [Google Scholar]