Abstract
Pneumocystis carinii causes life-threatening pneumonia in patients with impaired immunity. Recent studies suggest that alveolar macrophages interact with P. carinii through macrophage mannose receptors. However, the ligand(s) on P. carinii that is recognized by these receptors has not been fully defined. P. carinii contains a major mannose-rich surface antigen complex termed glycoprotein A (gpA). It was therefore hypothesized that gpA binds directly to macrophage mannose receptors and mediates organism attachment to these phagocytes. To assess this, gpA was purified from P. carinii by continuous-elution gel electrophoresis. 125I-labeled gpA bound to alveolar macrophages in a saturable fashion. In addition, gpA binding was substantially inhibited by both alpha-mannan and EDTA, further suggesting that gpA interacts with macrophage mannose receptors. Macrophage membrane proteins capable of binding to gpA were isolated with a gpA-Sepharose column. A 165-kDa membrane-associated protein was specifically eluted from the gpA-Sepharose column with EDTA (20 mM). This protein was identified as the macrophage mannose receptor by immunoprecipitation with a polyclonal anti-mannose receptor antiserum. To further investigate the role of gpA in P. carinii-macrophage interactions, 51Cr-labeled P. carinii cells were incubated with macrophages in the presence of increasing concentrations of soluble gpA, and organism attachment was quantified. Soluble gpA (2.5 mg/dl) competitively inhibited P. carinii attachment to alveolar macrophages by 51.3% +/- 3.7% (P = 0.01). Our findings demonstrate that gpA present on P. carinii interacts directly with mannose receptors, thereby mediating organism attachment to alveolar macrophages.
Full Text
The Full Text of this article is available as a PDF (253.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axén R., Porath J., Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature. 1967 Jun 24;214(5095):1302–1304. doi: 10.1038/2141302a0. [DOI] [PubMed] [Google Scholar]
- Bar-Shavit Z., Goldman R., Ofek I., Sharon N., Mirelman D. Mannose-binding activity of Escherichia coli: a determinant of attachment and ingestion of the bacteria by macrophages. Infect Immun. 1980 Aug;29(2):417–424. doi: 10.1128/iai.29.2.417-424.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartlett M. S., Fishman J. A., Queener S. F., Durkin M. M., Jay M. A., Smith J. W. New rat model of Pneumocystis carinii infection. J Clin Microbiol. 1988 Jun;26(6):1100–1102. doi: 10.1128/jcm.26.6.1100-1102.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackwell J. M., Ezekowitz R. A., Roberts M. B., Channon J. Y., Sim R. B., Gordon S. Macrophage complement and lectin-like receptors bind Leishmania in the absence of serum. J Exp Med. 1985 Jul 1;162(1):324–331. doi: 10.1084/jem.162.1.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castro M., Morgenthaler T. I., Hoffman O. A., Standing J. E., Rohrbach M. S., Limper A. H. Pneumocystis carinii induces the release of arachidonic acid and its metabolites from alveolar macrophages. Am J Respir Cell Mol Biol. 1993 Jul;9(1):73–81. doi: 10.1165/ajrcmb/9.1.73. [DOI] [PubMed] [Google Scholar]
- Castro M., Ralston N. V., Morgenthaler T. I., Rohrbach M. S., Limper A. H. Candida albicans stimulates arachidonic acid liberation from alveolar macrophages through alpha-mannan and beta-glucan cell wall components. Infect Immun. 1994 Aug;62(8):3138–3145. doi: 10.1128/iai.62.8.3138-3145.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cushion M. T., Kaselis M., Stringer S. L., Stringer J. R. Genetic stability and diversity of Pneumocystis carinii infecting rat colonies. Infect Immun. 1993 Nov;61(11):4801–4813. doi: 10.1128/iai.61.11.4801-4813.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drickamer K. Demonstration of carbohydrate-recognition activity in diverse proteins which share a common primary structure motif. Biochem Soc Trans. 1989 Feb;17(1):13–15. doi: 10.1042/bst0170013. [DOI] [PubMed] [Google Scholar]
- Ezekowitz R. A., Sim R. B., Hill M., Gordon S. Local opsonization by secreted macrophage complement components. Role of receptors for complement in uptake of zymosan. J Exp Med. 1984 Jan 1;159(1):244–260. doi: 10.1084/jem.159.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ezekowitz R. A., Stahl P. D. The structure and function of vertebrate mannose lectin-like proteins. J Cell Sci Suppl. 1988;9:121–133. doi: 10.1242/jcs.1988.supplement_9.6. [DOI] [PubMed] [Google Scholar]
- Ezekowitz R. A., Williams D. J., Koziel H., Armstrong M. Y., Warner A., Richards F. F., Rose R. M. Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nature. 1991 May 9;351(6322):155–158. doi: 10.1038/351155a0. [DOI] [PubMed] [Google Scholar]
- Gigliotti F., Haidaris P. J., Haidaris C. G., Wright T. W., Van der Meid K. R. Further evidence of host species-specific variation in antigens of Pneumocystis carinii using the polymerase chain reaction. J Infect Dis. 1993 Jul;168(1):191–194. doi: 10.1093/infdis/168.1.191. [DOI] [PubMed] [Google Scholar]
- Gigliotti F. Host species-specific antigenic variation of a mannosylated surface glycoprotein of Pneumocystis carinii. J Infect Dis. 1992 Feb;165(2):329–336. doi: 10.1093/infdis/165.2.329. [DOI] [PubMed] [Google Scholar]
- Gigliotti F., Stokes D. C., Cheatham A. B., Davis D. S., Hughes W. T. Development of murine monoclonal antibodies to Pneumocystis carinii. J Infect Dis. 1986 Aug;154(2):315–322. doi: 10.1093/infdis/154.2.315. [DOI] [PubMed] [Google Scholar]
- Haidaris P. J., Wright T. W., Gigliotti F., Haidaris C. G. Expression and characterization of a cDNA clone encoding an immunodominant surface glycoprotein of Pneumocystis carinii. J Infect Dis. 1992 Nov;166(5):1113–1123. doi: 10.1093/infdis/166.5.1113. [DOI] [PubMed] [Google Scholar]
- Hidalgo H. A., Helmke R. J., German V. F., Mangos J. A. Pneumocystis carinii induces an oxidative burst in alveolar macrophages. Infect Immun. 1992 Jan;60(1):1–7. doi: 10.1128/iai.60.1.1-7.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman O. A., Standing J. E., Limper A. H. Pneumocystis carinii stimulates tumor necrosis factor-alpha release from alveolar macrophages through a beta-glucan-mediated mechanism. J Immunol. 1993 May 1;150(9):3932–3940. [PubMed] [Google Scholar]
- Hunter S. W., Gaylord H., Brennan P. J. Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J Biol Chem. 1986 Sep 15;261(26):12345–12351. [PubMed] [Google Scholar]
- Kanbe T., Han Y., Redgrave B., Riesselman M. H., Cutler J. E. Evidence that mannans of Candida albicans are responsible for adherence of yeast forms to spleen and lymph node tissue. Infect Immun. 1993 Jun;61(6):2578–2584. doi: 10.1128/iai.61.6.2578-2584.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovacs J. A., Powell F., Edman J. C., Lundgren B., Martinez A., Drew B., Angus C. W. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii. J Biol Chem. 1993 Mar 15;268(8):6034–6040. [PubMed] [Google Scholar]
- Koziel H., Kruskal B. A., Ezekowitz R. A., Rose R. M. HIV impairs alveolar macrophage mannose receptor function against Pneumocystis carinii. Chest. 1993 Feb;103(2 Suppl):111S–112S. doi: 10.1378/chest.103.2_supplement.111s. [DOI] [PubMed] [Google Scholar]
- Koziel H., Williams D. J., Armstrong M. Y., Richards F. F., Fishman J. A., Ezekowitz R. A., Warner A., Fuglestad J., Rose R. M. New rapid method for the study of Pneumocystis carinii interaction with alveolar macrophages. J Protozool. 1991 Nov-Dec;38(6):173S–174S. [PubMed] [Google Scholar]
- Kéry V., Krepinský J. J., Warren C. D., Capek P., Stahl P. D. Ligand recognition by purified human mannose receptor. Arch Biochem Biophys. 1992 Oct;298(1):49–55. doi: 10.1016/0003-9861(92)90092-b. [DOI] [PubMed] [Google Scholar]
- Limper A. H., Martin W. J., 2nd Pneumocystis carinii: inhibition of lung cell growth mediated by parasite attachment. J Clin Invest. 1990 Feb;85(2):391–396. doi: 10.1172/JCI114451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Limper A. H., Offord K. P., Smith T. F., Martin W. J., 2nd Pneumocystis carinii pneumonia. Differences in lung parasite number and inflammation in patients with and without AIDS. Am Rev Respir Dis. 1989 Nov;140(5):1204–1209. doi: 10.1164/ajrccm/140.5.1204. [DOI] [PubMed] [Google Scholar]
- Limper A. H., Pottratz S. T., Martin W. J., 2nd Modulation of Pneumocystis carinii adherence to cultured lung cells by a mannose-dependent mechanism. J Lab Clin Med. 1991 Nov;118(5):492–499. [PubMed] [Google Scholar]
- Limper A. H., Standing J. E., Hoffman O. A., Castro M., Neese L. W. Vitronectin binds to Pneumocystis carinii and mediates organism attachment to cultured lung epithelial cells. Infect Immun. 1993 Oct;61(10):4302–4309. doi: 10.1128/iai.61.10.4302-4309.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linke M. J., Cushion M. T., Walzer P. D. Properties of the major antigens of rat and human Pneumocystis carinii. Infect Immun. 1989 May;57(5):1547–1555. doi: 10.1128/iai.57.5.1547-1555.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundgren B., Lipschik G. Y., Kovacs J. A. Purification and characterization of a major human Pneumocystis carinii surface antigen. J Clin Invest. 1991 Jan;87(1):163–170. doi: 10.1172/JCI114966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masur H., Jones T. C. The interaction in vitro of Pneumocystis carinii with macrophages and L-cells. J Exp Med. 1978 Jan 1;147(1):157–170. doi: 10.1084/jem.147.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray J. F., Garay S. M., Hopewell P. C., Mills J., Snider G. L., Stover D. E. NHLBI workshop summary. Pulmonary complications of the acquired immunodeficiency syndrome: an update. Report of the second National Heart, Lung and Blood Institute workshop. Am Rev Respir Dis. 1987 Feb;135(2):504–509. doi: 10.1164/arrd.1987.135.2.504. [DOI] [PubMed] [Google Scholar]
- Murray J. F., Mills J. Pulmonary infectious complications of human immunodeficiency virus infection. Part II. Am Rev Respir Dis. 1990 Jun;141(6):1582–1598. doi: 10.1164/ajrccm/141.6.1582. [DOI] [PubMed] [Google Scholar]
- Nakamura Y., Kitada K., Wada M., Saito M. Epitope study and cDNA screening of major surface glycoprotein of Pneumocystis carinii. J Protozool. 1991 Nov-Dec;38(6):3S–4S. [PubMed] [Google Scholar]
- Neese L. W., Standing J. E., Olson E. J., Castro M., Limper A. H. Vitronectin, fibronectin, and gp120 antibody enhance macrophage release of TNF-alpha in response to Pneumocystis carinii. J Immunol. 1994 May 1;152(9):4549–4556. [PubMed] [Google Scholar]
- Pesanti E. L., Shanley J. D. Glycoproteins of Pneumocystis carinii: characterization by electrophoresis and microscopy. J Infect Dis. 1988 Dec;158(6):1353–1359. doi: 10.1093/infdis/158.6.1353. [DOI] [PubMed] [Google Scholar]
- Peters S. G., Prakash U. B. Pneumocystis carinii pneumonia. Review of 53 cases. Am J Med. 1987 Jan;82(1):73–78. doi: 10.1016/0002-9343(87)90380-9. [DOI] [PubMed] [Google Scholar]
- Pistole T. G. Interaction of bacteria and fungi with lectins and lectin-like substances. Annu Rev Microbiol. 1981;35:85–112. doi: 10.1146/annurev.mi.35.100181.000505. [DOI] [PubMed] [Google Scholar]
- Pottratz S. T., Martin W. J., 2nd Mechanism of Pneumocystis carinii attachment to cultured rat alveolar macrophages. J Clin Invest. 1990 Nov;86(5):1678–1683. doi: 10.1172/JCI114891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pottratz S. T., Martin W. J., 2nd Role of fibronectin in Pneumocystis carinii attachment to cultured lung cells. J Clin Invest. 1990 Feb;85(2):351–356. doi: 10.1172/JCI114445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pottratz S. T., Paulsrud J., Smith J. S., Martin W. J., 2nd Pneumocystis carinii attachment to cultured lung cells by pneumocystis gp 120, a fibronectin binding protein. J Clin Invest. 1991 Aug;88(2):403–407. doi: 10.1172/JCI115318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radding J. A., Armstrong M. Y., Ullu E., Richards F. F. Identification and isolation of a major cell surface glycoprotein of Pneumocystis carinii. Infect Immun. 1989 Jul;57(7):2149–2157. doi: 10.1128/iai.57.7.2149-2157.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sepkowitz K. A., Brown A. E., Telzak E. E., Gottlieb S., Armstrong D. Pneumocystis carinii pneumonia among patients without AIDS at a cancer hospital. JAMA. 1992 Feb 12;267(6):832–837. [PubMed] [Google Scholar]
- Silverblatt F. J., Dreyer J. S., Schauer S. Effect of pili on susceptibility of Escherichia coli to phagocytosis. Infect Immun. 1979 Apr;24(1):218–223. doi: 10.1128/iai.24.1.218-223.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stahl P. D. The macrophage mannose receptor: current status. Am J Respir Cell Mol Biol. 1990 Apr;2(4):317–318. doi: 10.1165/ajrcmb/2.4.317. [DOI] [PubMed] [Google Scholar]
- Stringer S. L., Garbe T., Sunkin S. M., Stringer J. R. Genes encoding antigenic surface glycoproteins in Pneumocystis from humans. J Eukaryot Microbiol. 1993 Nov-Dec;40(6):821–826. doi: 10.1111/j.1550-7408.1993.tb04481.x. [DOI] [PubMed] [Google Scholar]
- Sutherland I. W. Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Annu Rev Microbiol. 1985;39:243–270. doi: 10.1146/annurev.mi.39.100185.001331. [DOI] [PubMed] [Google Scholar]
- Theus S. A., Linke M. J., Andrews R. P., Walzer P. D. Proliferative and cytokine responses to a major surface glycoprotein of Pneumocystis carinii. Infect Immun. 1993 Nov;61(11):4703–4709. doi: 10.1128/iai.61.11.4703-4709.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Von Behren L. A., Pesanti E. L. Uptake and degradation of Pneumocystis carinii by macrophages in vitro. Am Rev Respir Dis. 1978 Dec;118(6):1051–1059. doi: 10.1164/arrd.1978.118.6.1051. [DOI] [PubMed] [Google Scholar]
- Wada M., Kitada K., Saito M., Egawa K., Nakamura Y. cDNA sequence diversity and genomic clusters of major surface glycoprotein genes of Pneumocystis carinii. J Infect Dis. 1993 Oct;168(4):979–985. doi: 10.1093/infdis/168.4.979. [DOI] [PubMed] [Google Scholar]
- Wileman T. E., Lennartz M. R., Stahl P. D. Identification of the macrophage mannose receptor as a 175-kDa membrane protein. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2501–2505. doi: 10.1073/pnas.83.8.2501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright T. W., Simpson-Haidaris P. J., Gigliotti F., Harmsen A. G., Haidaris C. G. Conserved sequence homology of cysteine-rich regions in genes encoding glycoprotein A in Pneumocystis carinii derived from different host species. Infect Immun. 1994 May;62(5):1513–1519. doi: 10.1128/iai.62.5.1513-1519.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerman P. E., Voelker D. R., McCormack F. X., Paulsrud J. R., Martin W. J., 2nd 120-kD surface glycoprotein of Pneumocystis carinii is a ligand for surfactant protein A. J Clin Invest. 1992 Jan;89(1):143–149. doi: 10.1172/JCI115554. [DOI] [PMC free article] [PubMed] [Google Scholar]