Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Mar;63(3):865–873. doi: 10.1128/iai.63.3.865-873.1995

Scavenger receptor pathway for lipopolysaccharide binding to Kupffer and endothelial liver cells in vitro.

A Shnyra 1, A A Lindberg 1
PMCID: PMC173083  PMID: 7868258

Abstract

We have investigated the interaction of Salmonella minnesota R595 lipopolysaccharide (ReLPS) depleted of Ca2+ and Mg2+ with both Kupffer and endothelial liver cells under serum-free conditions. Specific and saturable binding levels of 125I-ReLPS were similar in both types of cells with respect to divalent cation independence, susceptibility to proteases, and concanavalin A inhibition. By using partial structures of ReLPS, it was demonstrated that acidic 3-deoxy-D-manno-octulosonic acid residues and phosphoryl groups on lipid A are of primary importance in ReLPS binding. The role of ionic interactions in LPS recognition by the cells was further confirmed by susceptibility of the binding to competitive inhibition by polyanions. Both ReLPS and ReLPS partial structures inhibited the specific cellular binding of acetylated low-density lipoprotein (Ac-LDL) by Kupffer cells and Ac-LDL- and formaldehyde-treated albumin by endothelial cells whose cellular accumulation is mediated by a different type(s) of scavenger receptor(s). In contrast, 125I-ReLPS binding to Kupffer and endothelial cells was not competed by Ac-LDL or formaldehyde-treated albumin. Our results indicate the scavenger pathway of LPS uptake by Kupffer and endothelial cells and the primary role of LPS anionic properties in this process.

Full Text

The Full Text of this article is available as a PDF (314.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai H., Kita T., Yokode M., Narumiya S., Kawai C. Multiple receptors for modified low density lipoproteins in mouse peritoneal macrophages: different uptake mechanisms for acetylated and oxidized low density lipoproteins. Biochem Biophys Res Commun. 1989 Mar 31;159(3):1375–1382. doi: 10.1016/0006-291x(89)92262-6. [DOI] [PubMed] [Google Scholar]
  2. Basu S. K., Goldstein J. L., Anderson G. W., Brown M. S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3178–3182. doi: 10.1073/pnas.73.9.3178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown M. S., Basu S. K., Falck J. R., Ho Y. K., Goldstein J. L. The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J Supramol Struct. 1980;13(1):67–81. doi: 10.1002/jss.400130107. [DOI] [PubMed] [Google Scholar]
  4. Dresel H. A., Friedrich E., Via D. P., Sinn H., Ziegler R., Schettler G. Binding of acetylated low density lipoprotein and maleylated bovine serum albumin to the rat liver: one or two receptors? EMBO J. 1987 Feb;6(2):319–326. doi: 10.1002/j.1460-2075.1987.tb04757.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eskild W., Henriksen T., Skretting G., Blomhoff R., Berg T. Endocytosis of acetylated low-density lipoprotein, endothelial cell-modified low-density lipoprotein, and formaldehyde-treated serum albumin by rat liver endothelial cells. Evidence of uptake via a common receptor. Scand J Gastroenterol. 1987 Dec;22(10):1263–1269. doi: 10.3109/00365528708996474. [DOI] [PubMed] [Google Scholar]
  6. Galanos C., Lüderitz O. Electrodialysis of lipopolysaccharides and their conversion to uniform salt forms. Eur J Biochem. 1975 Jun;54(2):603–610. doi: 10.1111/j.1432-1033.1975.tb04172.x. [DOI] [PubMed] [Google Scholar]
  7. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  8. Golenbock D. T., Hampton R. Y., Raetz C. R., Wright S. D. Human phagocytes have multiple lipid A-binding sites. Infect Immun. 1990 Dec;58(12):4069–4075. doi: 10.1128/iai.58.12.4069-4075.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Halling J. L., Hamill D. R., Lei M. G., Morrison D. C. Identification and characterization of lipopolysaccharide-binding proteins on human peripheral blood cell populations. Infect Immun. 1992 Mar;60(3):845–852. doi: 10.1128/iai.60.3.845-852.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hampton R. Y., Golenbock D. T., Penman M., Krieger M., Raetz C. R. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature. 1991 Jul 25;352(6333):342–344. doi: 10.1038/352342a0. [DOI] [PubMed] [Google Scholar]
  11. Haziot A., Chen S., Ferrero E., Low M. G., Silber R., Goyert S. M. The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol. 1988 Jul 15;141(2):547–552. [PubMed] [Google Scholar]
  12. Horiuchi S., Takata K., Morino Y. Characterization of a membrane-associated receptor from rat sinusoidal liver cells that binds formaldehyde-treated serum albumin. J Biol Chem. 1985 Jan 10;260(1):475–481. [PubMed] [Google Scholar]
  13. Karkhanis Y. D., Zeltner J. Y., Jackson J. J., Carlo D. J. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative bacteria. Anal Biochem. 1978 Apr;85(2):595–601. doi: 10.1016/0003-2697(78)90260-9. [DOI] [PubMed] [Google Scholar]
  14. Kirkland T. N., Ziegler E. J., Tobias P., Ward D. C., Michalek S. M., McGhee J. R., Macher I., Urayama K., Appelmelk B. J. Inhibition of lipopolysaccharide activation of 7OZ/3 cells by anti-lipopolysaccharide antibodies. J Immunol. 1988 Nov 1;141(9):3208–3213. [PubMed] [Google Scholar]
  15. Kodama T., Freeman M., Rohrer L., Zabrecky J., Matsudaira P., Krieger M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature. 1990 Feb 8;343(6258):531–535. doi: 10.1038/343531a0. [DOI] [PubMed] [Google Scholar]
  16. Lei M. G., Morrison D. C. Specific endotoxic lipopolysaccharide-binding proteins on murine splenocytes. I. Detection of lipopolysaccharide-binding sites on splenocytes and splenocyte subpopulations. J Immunol. 1988 Aug 1;141(3):996–1005. [PubMed] [Google Scholar]
  17. Lei M. G., Morrison D. C. Specific endotoxic lipopolysaccharide-binding proteins on murine splenocytes. II. Membrane localization and binding characteristics. J Immunol. 1988 Aug 1;141(3):1006–1011. [PubMed] [Google Scholar]
  18. Lynn W. A., Golenbock D. T. Lipopolysaccharide antagonists. Immunol Today. 1992 Jul;13(7):271–276. doi: 10.1016/0167-5699(92)90009-V. [DOI] [PubMed] [Google Scholar]
  19. Lynn W. A., Liu Y., Golenbock D. T. Neither CD14 nor serum is absolutely necessary for activation of mononuclear phagocytes by bacterial lipopolysaccharide. Infect Immun. 1993 Oct;61(10):4452–4461. doi: 10.1128/iai.61.10.4452-4461.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nagelkerke J. F., Barto K. P., van Berkel T. J. In vivo and in vitro uptake and degradation of acetylated low density lipoprotein by rat liver endothelial, Kupffer, and parenchymal cells. J Biol Chem. 1983 Oct 25;258(20):12221–12227. [PubMed] [Google Scholar]
  21. Nnalue N. A., Shnyra A., Hultenby K., Lindberg A. A. Salmonella choleraesuis and Salmonella typhimurium associated with liver cells after intravenous inoculation of rats are localized mainly in Kupffer cells and multiply intracellularly. Infect Immun. 1992 Jul;60(7):2758–2768. doi: 10.1128/iai.60.7.2758-2768.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., Tobias P. S., Ulevitch R. J. Structure and function of lipopolysaccharide binding protein. Science. 1990 Sep 21;249(4975):1429–1431. doi: 10.1126/science.2402637. [DOI] [PubMed] [Google Scholar]
  23. Shnyra A., Hultenby K., Lindberg A. A. Role of the physical state of Salmonella lipopolysaccharide in expression of biological and endotoxic properties. Infect Immun. 1993 Dec;61(12):5351–5360. doi: 10.1128/iai.61.12.5351-5360.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smedsrød B., Pertoft H. Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence. J Leukoc Biol. 1985 Aug;38(2):213–230. doi: 10.1002/jlb.38.2.213. [DOI] [PubMed] [Google Scholar]
  25. Sparrow C. P., Parthasarathy S., Steinberg D. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. J Biol Chem. 1989 Feb 15;264(5):2599–2604. [PubMed] [Google Scholar]
  26. Ulevitch R. J. The preparation and characterization of a radioiodinated bacterial lipopolysaccharide. Immunochemistry. 1978 Mar;15(3):157–164. doi: 10.1016/0161-5890(78)90144-x. [DOI] [PubMed] [Google Scholar]
  27. Wright S. D. Multiple receptors for endotoxin. Curr Opin Immunol. 1991 Feb;3(1):83–90. doi: 10.1016/0952-7915(91)90082-c. [DOI] [PubMed] [Google Scholar]
  28. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES