Abstract
The content of alkaline phosphatase (ALP) was determined in neutrophils isolated from patients with acute bacterial infections by a standard enzyme assay. Compared with control cells, patient cells exhibited about a fivefold increase in ALP activity. There was no difference between the ALP Km values of control and patient cells, which indicates that the elevated activity in patient cells was due to the presence of increased amounts of the enzyme. The ALP isozyme in both cell types was determined to be the tissue-unspecific ALP. The fact that much of the ALP activity was measurable only in the presence of detergent suggested that the enzyme was localized in the secretory vesicles, a putative reservoir of plasma membrane components. The amount and subcellular distribution of two other secretory vesicle membrane proteins, i.e., cytochrome b and complement receptor 3, were not altered; hence, we conclude that there was no general increase in amounts of secretory vesicle membrane constituents in the patient cells.
Full Text
The Full Text of this article is available as a PDF (214.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berger M., Wetzler E. M., Welter E., Turner J. R., Tartakoff A. M. Intracellular sites for storage and recycling of C3b receptors in human neutrophils. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3019–3023. doi: 10.1073/pnas.88.8.3019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borregaard N., Christensen L., Bejerrum O. W., Birgens H. S., Clemmensen I. Identification of a highly mobilizable subset of human neutrophil intracellular vesicles that contains tetranectin and latent alkaline phosphatase. J Clin Invest. 1990 Feb;85(2):408–416. doi: 10.1172/JCI114453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borregaard N., Heiple J. M., Simons E. R., Clark R. A. Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol. 1983 Jul;97(1):52–61. doi: 10.1083/jcb.97.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borregaard N., Kjeldsen L., Lollike K., Sengeløv H. Granules and vesicles of human neutrophils. The role of endomembranes as source of plasma membrane proteins. Eur J Haematol. 1993 Nov;51(5):318–322. doi: 10.1111/j.1600-0609.1993.tb01615.x. [DOI] [PubMed] [Google Scholar]
- Borregaard N., Kjeldsen L., Sengeløv H. Mobilization of granules in neutrophils from patients with myeloproliferative disorders. Eur J Haematol. 1993 Apr;50(4):189–199. doi: 10.1111/j.1600-0609.1993.tb01920.x. [DOI] [PubMed] [Google Scholar]
- Borregaard N., Miller L. J., Springer T. A. Chemoattractant-regulated mobilization of a novel intracellular compartment in human neutrophils. Science. 1987 Sep 4;237(4819):1204–1206. doi: 10.1126/science.3629236. [DOI] [PubMed] [Google Scholar]
- Bos A., Wever R., Roos D. Characterization and quantification of the peroxidase in human monocytes. Biochim Biophys Acta. 1978 Jul 7;525(1):37–44. doi: 10.1016/0005-2744(78)90197-3. [DOI] [PubMed] [Google Scholar]
- Briheim G., Follin P., Sandstedt S., Dahlgren C. Relationship between intracellularly and extracellularly generated oxygen metabolites from primed polymorphonuclear leukocytes differs from that obtained from nonprimed cells. Inflammation. 1989 Aug;13(4):455–464. doi: 10.1007/BF00914928. [DOI] [PubMed] [Google Scholar]
- Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
- Dahlgren C., Follin P. Degranulation in human neutrophils primes the cells for subsequent responsiveness to the chemoattractant N-formylmethionylleucylphenylalanine but does not increase the sensitivity of the NADPH-oxidase to an intracellular calcium rise. Biochim Biophys Acta. 1990 Apr 9;1052(1):42–46. doi: 10.1016/0167-4889(90)90055-i. [DOI] [PubMed] [Google Scholar]
- Dahlgren C. Temporal adaptation of human neutrophil metabolic responsiveness to the peptide formylmethionyl-leucyl phenylalanine: a comparison between human neutrophils and granule-depleted neutrophil cytoplasts. Cell Biochem Funct. 1990 Jan;8(1):57–64. doi: 10.1002/cbf.290080109. [DOI] [PubMed] [Google Scholar]
- DeChatelet L. R., Cooper M. R. A modified procedure for the determination of leukocyte alkaline phosphatase. Biochem Med. 1970 Aug;4(1):61–68. doi: 10.1016/0006-2944(70)90103-1. [DOI] [PubMed] [Google Scholar]
- Fletcher M. P., Seligmann B. E., Gallin J. I. Correlation of human neutrophil secretion, chemoattractant receptor mobilization, and enhanced functional capacity. J Immunol. 1982 Feb;128(2):941–948. [PubMed] [Google Scholar]
- Follin P., Briheim G., Sandstedt S., Dahlgren C. Human neutrophil chemiluminescence and f-Meth-Leu-Phe receptor exposure in bacterial infections. APMIS. 1989 Jul;97(7):585–590. doi: 10.1111/j.1699-0463.1989.tb00447.x. [DOI] [PubMed] [Google Scholar]
- GOTTLIEBLAU K. S., WASSERMAN L. R., HERBERT V. RAPID CHARCOAL ASSAY FOR INTRINSIC FACTOR (IF), GASTRIC JUICE UNSATURATED B12 BINDING CAPACITY, ANTIBODY TO IF, AND SERUM UNSATURATED B12 BINDING CAPACITY. Blood. 1965 Jun;25:875–884. [PubMed] [Google Scholar]
- Gainer A. L., Stinson R. A. Evidence that alkaline phosphatase from human neutrophils is the same gene product as the liver/kidney/bone isoenzyme. Clin Chim Acta. 1982 Aug 4;123(1-2):11–17. doi: 10.1016/0009-8981(82)90107-3. [DOI] [PubMed] [Google Scholar]
- Hirano K., Iiizumi Y., Mori Y., Toyoshi K., Sugiura M., Iino S. Role of alkaline phosphatase in phosphate uptake into brush border membrane vesicles from human intestinal mucosa. J Biochem. 1985 May;97(5):1461–1466. doi: 10.1093/oxfordjournals.jbchem.a135200. [DOI] [PubMed] [Google Scholar]
- Hirano K., Matsumoto H., Tanaka T., Hayashi Y., Iino S., Domar U., Stigbrand T. Specific assays for human alkaline phosphatase isozymes. Clin Chim Acta. 1987 Jul 15;166(2-3):265–273. doi: 10.1016/0009-8981(87)90429-3. [DOI] [PubMed] [Google Scholar]
- Kawakami M., Tsutsumi H., Kumakawa T., Abe H., Hirai M., Kurosawa S., Mori M., Fukushima M. Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood. 1990 Nov 15;76(10):1962–1964. [PubMed] [Google Scholar]
- Kobayashi T., Robinson J. M. A novel intracellular compartment with unusual secretory properties in human neutrophils. J Cell Biol. 1991 May;113(4):743–756. doi: 10.1083/jcb.113.4.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundahl J., Dahlgren C., Eklund A., Hed J., Hernbrand R., Tornling G. Quartz selectively down-regulates CR1 on activated human granulocytes. J Leukoc Biol. 1993 Jan;53(1):99–103. doi: 10.1002/jlb.53.1.99. [DOI] [PubMed] [Google Scholar]
- Makiya R., Stigbrand T. Placental alkaline phosphatase is related to human IgG internalization in HEp2 cells. Biochem Biophys Res Commun. 1992 Jan 31;182(2):624–630. doi: 10.1016/0006-291x(92)91778-o. [DOI] [PubMed] [Google Scholar]
- McCall C. E., Bass D. A., DeChatelet L. R., Link A. S., Jr, Mann M. In vitro responses of human neutrophils to N-formyl-methionyl-leucyl-phenylalanine: correlation with effects of acute bacterial infection. J Infect Dis. 1979 Sep;140(3):277–286. doi: 10.1093/infdis/140.3.277. [DOI] [PubMed] [Google Scholar]
- McCall C. E., Katayama I., Cotran R. S., Finland M. Lysosomal and ultrastructural changes in human "toxic" neutrophils during bacterial infection. J Exp Med. 1969 Feb 1;129(2):267–293. doi: 10.1084/jem.129.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer-Sabellek W., Sinha P., Köttgen E. Alkaline phosphatase. Laboratory and clinical implications. J Chromatogr. 1988 Jul 29;429:419–444. [PubMed] [Google Scholar]
- Sato N., Mizukami H., Tani K., Asano S. Regulation of mRNA levels of alkaline phosphatase gene in neutrophilic granulocytes by granulocyte colony-stimulating factor and retinoic acid. Eur J Haematol. 1991 Feb;46(2):107–111. doi: 10.1111/j.1600-0609.1991.tb00530.x. [DOI] [PubMed] [Google Scholar]
- Sengeløv H., Boulay F., Kjeldsen L., Borregaard N. Subcellular localization and translocation of the receptor for N-formylmethionyl-leucyl-phenylalanine in human neutrophils. Biochem J. 1994 Apr 15;299(Pt 2):473–479. doi: 10.1042/bj2990473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sengeløv H., Kjeldsen L., Diamond M. S., Springer T. A., Borregaard N. Subcellular localization and dynamics of Mac-1 (alpha m beta 2) in human neutrophils. J Clin Invest. 1993 Sep;92(3):1467–1476. doi: 10.1172/JCI116724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sengeløv H., Nielsen M. H., Borregaard N. Separation of human neutrophil plasma membrane from intracellular vesicles containing alkaline phosphatase and NADPH oxidase activity by free flow electrophoresis. J Biol Chem. 1992 Jul 25;267(21):14912–14917. [PubMed] [Google Scholar]
- Smith G. P., Harris H., Peters T. J. Studies of the biochemical and immunological properties of human neutrophil alkaline phosphatase with comparison to the established alkaline phosphatase isoenzymes. Clin Chim Acta. 1984 Sep 29;142(2):221–230. doi: 10.1016/0009-8981(84)90380-2. [DOI] [PubMed] [Google Scholar]
- Stigbrand T. Present status and future trends of human alkaline phosphatases. Prog Clin Biol Res. 1984;166:3–14. [PubMed] [Google Scholar]
- Tennenberg S. D., Solomkin J. S. Neutrophil activation in sepsis. The relationship between fmet-leu-phe receptor mobilization and oxidative activity. Arch Surg. 1988 Feb;123(2):171–175. doi: 10.1001/archsurg.1988.01400260051005. [DOI] [PubMed] [Google Scholar]
- Tosi M. F., Zakem H. Surface expression of Fc gamma receptor III (CD16) on chemoattractant-stimulated neutrophils is determined by both surface shedding and translocation from intracellular storage compartments. J Clin Invest. 1992 Aug;90(2):462–470. doi: 10.1172/JCI115882. [DOI] [PMC free article] [PubMed] [Google Scholar]
