Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Mar;63(3):961–968. doi: 10.1128/iai.63.3.961-968.1995

Synthetic peptides representing T-cell epitopes act as carriers in pneumococcal polysaccharide conjugate vaccines.

E A de Velasco 1, D Merkus 1, S Anderton 1, A F Verheul 1, E F Lizzio 1, R Van der Zee 1, W Van Eden 1, T Hoffman 1, J Verhoef 1, H Snippe 1
PMCID: PMC173096  PMID: 7532630

Abstract

Improvement of antibody responses to polysaccharides through their linkage to proteins is thought to be mediated by protein-specific T helper (Th) cells. To investigate whether the carrier protein of a conjugate could be substituted by a Th epitope, Streptococcus pneumoniae type 17F polysaccharide (PS) was bromoacetylated and coupled to different peptides via their carboxy-terminal cysteines. Two peptides, one from the mycobacterial 65-kDa heat shock protein (hsp65) and the other from influenza virus hemagglutinin, are well-known Th epitopes. Two other peptides were selected from the pneumolysin sequence by Th epitope prediction methods; one of them was synthesized with cysteine either at the carboxy or the amino terminus. Three conjugates consistently elicited in mice anti-PS immunoglobulin M (IgM) and IgG responses that were not observed upon immunization with derivatized PS without peptide. The same conjugates induced no anti-PS antibody responses in athymic (nu/nu) mice, whereas clear responses were elicited in euthymic (nu/+) controls, demonstrating the thymus-dependent character of these conjugates. Only the three conjugates inducing anti-PS responses were capable of eliciting antipeptide antibodies. One of the immunogenic conjugates was studied in more detail. It induced significant protection and an anti-PS IgG response comprising all subclasses. On the basis of these results and proliferation studies with peptide and conjugate-primed cells, it is concluded that linkage of Th epitopes to PS in the right orientation enhances its immunogenicity in a thymus-dependent manner. Future possibilities for using peptides as carriers for inducing antibody responses to poorly immunogenic saccharide antigens are discussed.

Full Text

The Full Text of this article is available as a PDF (289.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso de Velasco E., Verheul A. F., Veeneman G. H., Gomes L. J., van Boom J. H., Verhoef J., Snippe H. Protein-conjugated synthetic di- and trisaccharides of pneumococcal type 17F exhibit a different immunogenicity and antigenicity than tetrasaccharide. Vaccine. 1993 Nov;11(14):1429–1436. doi: 10.1016/0264-410x(93)90172-t. [DOI] [PubMed] [Google Scholar]
  2. Alonso de Velasco E., Verheul A. F., van Steijn A. M., Dekker H. A., Feldman R. G., Fernández I. M., Kamerling J. P., Vliegenthart J. F., Verhoef J., Snippe H. Epitope specificity of rabbit immunoglobulin G (IgG) elicited by pneumococcal type 23F synthetic oligosaccharide- and native polysaccharide-protein conjugate vaccines: comparison with human anti-polysaccharide 23F IgG. Infect Immun. 1994 Mar;62(3):799–808. doi: 10.1128/iai.62.3.799-808.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson P., Insel R. A. Prospects for overcoming maturational and genetic barriers to the human antibody response to the capsular polysaccharide of Haemophilus influenzae type b. Vaccine. 1988 Apr;6(2):188–191. doi: 10.1016/s0264-410x(88)80026-4. [DOI] [PubMed] [Google Scholar]
  4. Barington T., Gyhrs A., Kristensen K., Heilmann C. Opposite effects of actively and passively acquired immunity to the carrier on responses of human infants to a Haemophilus influenzae type b conjugate vaccine. Infect Immun. 1994 Jan;62(1):9–14. doi: 10.1128/iai.62.1.9-14.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barington T., Skettrup M., Juul L., Heilmann C. Non-epitope-specific suppression of the antibody response to Haemophilus influenzae type b conjugate vaccines by preimmunization with vaccine components. Infect Immun. 1993 Feb;61(2):432–438. doi: 10.1128/iai.61.2.432-438.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barrios C., Lussow A. R., Van Embden J., Van der Zee R., Rappuoli R., Costantino P., Louis J. A., Lambert P. H., Del Giudice G. Mycobacterial heat-shock proteins as carrier molecules. II: The use of the 70-kDa mycobacterial heat-shock protein as carrier for conjugated vaccines can circumvent the need for adjuvants and Bacillus Calmette Guérin priming. Eur J Immunol. 1992 Jun;22(6):1365–1372. doi: 10.1002/eji.1830220606. [DOI] [PubMed] [Google Scholar]
  7. Bernatowicz M. S., Matsueda G. R. Preparation of peptide-protein immunogens using N-succinimidyl bromoacetate as a heterobifunctional crosslinking reagent. Anal Biochem. 1986 May 15;155(1):95–102. doi: 10.1016/0003-2697(86)90231-9. [DOI] [PubMed] [Google Scholar]
  8. Beuvery E. C., van Rossum F., Nagel J. Comparison of the induction of immunoglobulin M and G antibodies in mice with purified pneumococcal type 3 and meningococcal group C polysaccharides and their protein conjugates. Infect Immun. 1982 Jul;37(1):15–22. doi: 10.1128/iai.37.1.15-22.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bixler G. S., Jr, Eby R., Dermody K. M., Woods R. M., Seid R. C., Pillai S. Synthetic peptide representing a T-cell epitope of CRM197 substitutes as carrier molecule in a Haemophilus influenzae type B (Hib) conjugate vaccine. Adv Exp Med Biol. 1989;251:175–180. doi: 10.1007/978-1-4757-2046-4_15. [DOI] [PubMed] [Google Scholar]
  10. Brett S. J., Lamb J. R., Cox J. H., Rothbard J. B., Mehlert A., Ivanyi J. Differential pattern of T cell recognition of the 65-kDa mycobacterial antigen following immunization with the whole protein or peptides. Eur J Immunol. 1989 Jul;19(7):1303–1310. doi: 10.1002/eji.1830190723. [DOI] [PubMed] [Google Scholar]
  11. Del Giudice G. New carriers and adjuvants in the development of vaccines. Curr Opin Immunol. 1992 Aug;4(4):454–459. doi: 10.1016/s0952-7915(06)80038-5. [DOI] [PubMed] [Google Scholar]
  12. Del Prete G. F., De Carli M., Ricci M., Romagnani S. Helper activity for immunoglobulin synthesis of T helper type 1 (Th1) and Th2 human T cell clones: the help of Th1 clones is limited by their cytolytic capacity. J Exp Med. 1991 Oct 1;174(4):809–813. doi: 10.1084/jem.174.4.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Etlinger H. M., Gillessen D., Lahm H. W., Matile H., Schönfeld H. J., Trzeciak A. Use of prior vaccinations for the development of new vaccines. Science. 1990 Jul 27;249(4967):423–425. doi: 10.1126/science.1696030. [DOI] [PubMed] [Google Scholar]
  14. Fiorentino D. F., Bond M. W., Mosmann T. R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med. 1989 Dec 1;170(6):2081–2095. doi: 10.1084/jem.170.6.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gajewski T. F., Fitch F. W. Anti-proliferative effect of IFN-gamma in immune regulation. I. IFN-gamma inhibits the proliferation of Th2 but not Th1 murine helper T lymphocyte clones. J Immunol. 1988 Jun 15;140(12):4245–4252. [PubMed] [Google Scholar]
  16. Gajewski T. F., Schell S. R., Fitch F. W. Evidence implicating utilization of different T cell receptor-associated signaling pathways by TH1 and TH2 clones. J Immunol. 1990 Jun 1;144(11):4110–4120. [PubMed] [Google Scholar]
  17. Germann T., Partenheimer A., Rüde E. Requirements for the growth of TH1 lymphocyte clones. Eur J Immunol. 1990 Sep;20(9):2035–2040. doi: 10.1002/eji.1830200923. [DOI] [PubMed] [Google Scholar]
  18. Golvano J., Lasarte J. J., Sarobe P., Gullón A., Prieto J., Borrás-Cuesta F. Polarity of immunogens: implications for vaccine design. Eur J Immunol. 1990 Oct;20(10):2363–2366. doi: 10.1002/eji.1830201031. [DOI] [PubMed] [Google Scholar]
  19. Greenbaum L. A., Horowitz J. B., Woods A., Pasqualini T., Reich E. P., Bottomly K. Autocrine growth of CD4+ T cells. Differential effects of IL-1 on helper and inflammatory T cells. J Immunol. 1988 Mar 1;140(5):1555–1560. [PubMed] [Google Scholar]
  20. Hackett C. J., Dietzschold B., Gerhard W., Ghrist B., Knorr R., Gillessen D., Melchers F. Influenza virus site recognized by a murine helper T cell specific for H1 strains. Localization to a nine amino acid sequence in the hemagglutinin molecule. J Exp Med. 1983 Aug 1;158(2):294–302. doi: 10.1084/jem.158.2.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hackett C. J., Hurwitz J. L., Dietzschold B., Gerhard W. A synthetic decapeptide of influenza virus hemagglutinin elicits helper T cells with the same fine recognition specificities as occur in response to whole virus. J Immunol. 1985 Aug;135(2):1391–1394. [PubMed] [Google Scholar]
  22. Harboe M., Quayle A. J. Heat shock proteins: friend and foe? Clin Exp Immunol. 1991 Oct;86(1):2–5. doi: 10.1111/j.1365-2249.1991.tb05764.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hayakawa K., Hardy R. R. Murine CD4+ T cell subsets defined. J Exp Med. 1988 Nov 1;168(5):1825–1838. doi: 10.1084/jem.168.5.1825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hunter R., Olsen M., Buynitzky S. Adjuvant activity of non-ionic block copolymers. IV. Effect of molecular weight and formulation on titre and isotype of antibody. Vaccine. 1991 Apr;9(4):250–256. doi: 10.1016/0264-410x(91)90108-i. [DOI] [PubMed] [Google Scholar]
  25. Katsura Y., Takaoki M., Nishikawa S., Muramatsu S. Cell-mediated and humoral immune responses in mice. IV. Difference of the functional cell population between helper activity and delayed-type hypersensitivity. Immunology. 1977 Mar;32(3):237–245. [PMC free article] [PubMed] [Google Scholar]
  26. Kemp H. A., Morgan M. R. Studies on the detrimental effects of bivalent binding in a microtitration plate ELISA and possible remedies. J Immunol Methods. 1986 Nov 20;94(1-2):65–72. doi: 10.1016/0022-1759(86)90216-4. [DOI] [PubMed] [Google Scholar]
  27. Kraaijeveld C. A., la Rivière G., Benaissa-Trouw B. J., Jansen J., Harmsen T., Snippe H. Effect of the adjuvant dimethyl dioctadecyl ammonium bromide on the humoral and cellular immune responses to encephalomyocarditis virus. Antiviral Res. 1983 Sep;3(3):137–149. doi: 10.1016/0166-3542(83)90021-9. [DOI] [PubMed] [Google Scholar]
  28. Krzych U., Fowler A. V., Miller A., Sercarz E. E. Repertoires of T cells directed against a large protein antigen, beta-galactosidase. I. Helper cells have a more restricted specificity repertoire than proliferative cells. J Immunol. 1982 Apr;128(4):1529–1534. [PubMed] [Google Scholar]
  29. Lee A. C., Powell J. E., Tregear G. W., Niall H. D., Stevens V. C. A method for preparing beta-hCG COOH peptide-carrier conjugates of predictable composition. Mol Immunol. 1980 Jun;17(6):749–756. doi: 10.1016/0161-5890(80)90145-5. [DOI] [PubMed] [Google Scholar]
  30. Lett E., Gangloff S., Zimmermann M., Wachsmann D., Klein J. P. Immunogenicity of polysaccharides conjugated to peptides containing T- and B-cell epitopes. Infect Immun. 1994 Mar;62(3):785–792. doi: 10.1128/iai.62.3.785-792.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Murray J. S., Madri J., Tite J., Carding S. R., Bottomly K. MHC control of CD4+ T cell subset activation. J Exp Med. 1989 Dec 1;170(6):2135–2140. doi: 10.1084/jem.170.6.2135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Paton J. C., Lock R. A., Lee C. J., Li J. P., Berry A. M., Mitchell T. J., Andrew P. W., Hansman D., Boulnois G. J. Purification and immunogenicity of genetically obtained pneumolysin toxoids and their conjugation to Streptococcus pneumoniae type 19F polysaccharide. Infect Immun. 1991 Jul;59(7):2297–2304. doi: 10.1128/iai.59.7.2297-2304.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Peeters C. C., Tenbergen-Meekes A. M., Poolman J. T., Beurret M., Zegers B. J., Rijkers G. T. Effect of carrier priming on immunogenicity of saccharide-protein conjugate vaccines. Infect Immun. 1991 Oct;59(10):3504–3510. doi: 10.1128/iai.59.10.3504-3510.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Perkins D. L., Berriz G., Kamradt T., Smith J. A., Gefter M. L. Immunodominance: intramolecular competition between T cell epitopes. J Immunol. 1991 Apr 1;146(7):2137–2144. [PubMed] [Google Scholar]
  35. Rabin E. M., Mond J. J., Ohara J., Paul W. E. Interferon-gamma inhibits the action of B cell stimulatory factor (BSF)-1 on resting B cells. J Immunol. 1986 Sep 1;137(5):1573–1576. [PubMed] [Google Scholar]
  36. Reynolds D. S., Boom W. H., Abbas A. K. Inhibition of B lymphocyte activation by interferon-gamma. J Immunol. 1987 Aug 1;139(3):767–773. [PubMed] [Google Scholar]
  37. Robbins J. B., Schneerson R. Polysaccharide-protein conjugates: a new generation of vaccines. J Infect Dis. 1990 May;161(5):821–832. doi: 10.1093/infdis/161.5.821. [DOI] [PubMed] [Google Scholar]
  38. Rothbard J. B., Taylor W. R. A sequence pattern common to T cell epitopes. EMBO J. 1988 Jan;7(1):93–100. doi: 10.1002/j.1460-2075.1988.tb02787.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Snijders A., Benaissa-Trouw B. J., Visser-Vernooy H. J., Fernandez I., Snippe H., Kraaijeveld C. A. A delayed-type hypersensitivity-inducing T-cell epitope of Semliki Forest virus mediates effective T-helper activity for antibody production. Immunology. 1992 Nov;77(3):322–329. [PMC free article] [PubMed] [Google Scholar]
  40. Soloway P., Fish S., Passmore H., Gefter M., Coffee R., Manser T. Regulation of the immune response to peptide antigens: differential induction of immediate-type hypersensitivity and T cell proliferation due to changes in either peptide structure or major histocompatibility complex haplotype. J Exp Med. 1991 Oct 1;174(4):847–858. doi: 10.1084/jem.174.4.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Spouge J. L., Guy H. R., Cornette J. L., Margalit H., Cease K., Berzofsky J. A., DeLisi C. Strong conformational propensities enhance T cell antigenicity. J Immunol. 1987 Jan 1;138(1):204–212. [PubMed] [Google Scholar]
  42. Walker J. A., Allen R. L., Falmagne P., Johnson M. K., Boulnois G. J. Molecular cloning, characterization, and complete nucleotide sequence of the gene for pneumolysin, the sulfhydryl-activated toxin of Streptococcus pneumoniae. Infect Immun. 1987 May;55(5):1184–1189. doi: 10.1128/iai.55.5.1184-1189.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. van Dam G. J., Verheul A. F., Zigterman G. J., de Reuver M. J., Snippe H. Estimation of the avidity of antibodies in polyclonal antisera against Streptococcus pneumoniae type 3 by inhibition ELISA. Mol Immunol. 1989 Mar;26(3):269–274. doi: 10.1016/0161-5890(89)90080-1. [DOI] [PubMed] [Google Scholar]
  44. van Noort J. M., van der Drift A. C. The selectivity of cathepsin D suggests an involvement of the enzyme in the generation of T-cell epitopes. J Biol Chem. 1989 Aug 25;264(24):14159–14164. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES