Abstract
Certain strains of Streptococcus sanguis adhere selectively to human platelets (Adh+) and, in plasma, induce them to aggregate into in vitro thrombi (Agg+). The induction of aggregation is mediated by the platelet aggregation-associated protein (PAAP) expressed on the cell surface of the streptococcus. In endocarditis, expression of PAAP may be regulated by association with host proteins on damaged heart valves. To begin to test this hypothesis, three strains of S. sanguis were each cultured in the presence or absence of collagens (types I to X), laminin, or PAAP-derived peptide preparations. After harvesting and washing, the platelet-interactive phenotype of strains 133-79 (Adh+ Agg+), L74 (Adh+ Agg-), and 10556 (Adh- Agg-) was unchanged. The cells from each culture were then digested mildly with trypsin to isolate PAAP. PAAP isolated from strain 133-79 (Adh+ Agg+) grown in the absence of added collagen, other proteins, or peptides inhibited platelet aggregation in response to untreated cells of S. sanguis. Platelet aggregation was induced immediately, however, by PAAP from strain 133-79 isolated after growth in the presence of 300 nM type I collagen, while lower concentrations yielded protein fragments that potentiated the response to intact cells. Aggregation-inducing PAAP could be removed by anti-PAAP (PGEQGPK) immunoaffinity chromatography, but only inhibitory activity could be recovered. The agonist effect of PAAP was not associated with collagen itself, since the PAAP preparations did not contain detectable amounts of hydroxyproline. PAAP antigens isolated from cells grown in the presence and absence of collagen had similar apparent molecular weights, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblotting. When electrophoresis was performed under nondenaturing conditions, however, PAAP isolated from cells grown in type I collagen migrated more slowly. Strain L74 grown with type I collagen yielded tryptic fragments of proteins that inhibited aggregation significantly better than control peptides (no collagen in the medium). Strain 10556 was apparently unaffected by growth in type I collagen. The effect of type I collagen was somewhat unique. Growth in the presence of collagen types II to VI (300 nM) yielded protein fragments that potentiated without inducing platelet aggregation, while other collagens, laminin, and PAAP-derived peptides did not affect platelet aggregation. These results suggest that growth in the presence of type I collagen and, perhaps, collagens II to VI alters the expression and conformation of PAAP in certain strains of S. sanguis.
Full Text
The Full Text of this article is available as a PDF (217.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Coller B. S., Peerschke E. I., Scudder L. E., Sullivan C. A. A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycoproteins IIb and/or IIIa. J Clin Invest. 1983 Jul;72(1):325–338. doi: 10.1172/JCI110973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Erickson P. R., Herzberg M. C. A collagen-like immunodeterminant on the surface of Streptococcus sanguis induces platelet aggregation. J Immunol. 1987 May 15;138(10):3360–3366. [PubMed] [Google Scholar]
- Erickson P. R., Herzberg M. C. Purification and partial characterization of a 65-kDa platelet aggregation-associated protein antigen from the surface of Streptococcus sanguis. J Biol Chem. 1990 Aug 25;265(24):14080–14087. [PubMed] [Google Scholar]
- Erickson P. R., Herzberg M. C. The Streptococcus sanguis platelet aggregation-associated protein. Identification and characterization of the minimal platelet-interactive domain. J Biol Chem. 1993 Jan 25;268(3):1646–1649. [PubMed] [Google Scholar]
- Erickson P. R., Herzberg M. C., Tierney G. Cross-reactive immunodeterminants on Streptococcus sanguis and collagen. Predicting a structural motif of platelet-interactive domains. J Biol Chem. 1992 May 15;267(14):10018–10023. [PubMed] [Google Scholar]
- Gershoni J. M., Palade G. E. Protein blotting: principles and applications. Anal Biochem. 1983 May;131(1):1–15. doi: 10.1016/0003-2697(83)90128-8. [DOI] [PubMed] [Google Scholar]
- Herzberg M. C., Brintzenhofe K. L., Clawson C. C. Aggregation of human platelets and adhesion of Streptococcus sanguis. Infect Immun. 1983 Mar;39(3):1457–1469. doi: 10.1128/iai.39.3.1457-1469.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzberg M. C., Brintzenhofe K. L., Clawson C. C. Cell-free released components of Streptococcus sanguis inhibit human platelet aggregation. Infect Immun. 1983 Oct;42(1):394–401. doi: 10.1128/iai.42.1.394-401.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzberg M. C., Erickson P. R., Kane P. K., Clawson D. J., Clawson C. C., Hoff F. A. Platelet-interactive products of Streptococcus sanguis protoplasts. Infect Immun. 1990 Dec;58(12):4117–4125. doi: 10.1128/iai.58.12.4117-4125.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzberg M. C., Gong K., MacFarlane G. D., Erickson P. R., Soberay A. H., Krebsbach P. H., Manjula G., Schilling K., Bowen W. H. Phenotypic characterization of Streptococcus sanguis virulence factors associated with bacterial endocarditis. Infect Immun. 1990 Feb;58(2):515–522. doi: 10.1128/iai.58.2.515-522.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzberg M. C., Levine M. J., Ellison S. A., Tabak L. A. Purification and characterization of monkey salivary mucin. J Biol Chem. 1979 Mar 10;254(5):1487–1494. [PubMed] [Google Scholar]
- Herzberg M. C., MacFarlane G. D., Gong K., Armstrong N. N., Witt A. R., Erickson P. R., Meyer M. W. The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis. Infect Immun. 1992 Nov;60(11):4809–4818. doi: 10.1128/iai.60.11.4809-4818.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
- Soberay A. H., Herzberg M. C., Rudney J. D., Nieuwenhuis H. K., Sixma J. J., Seligsohn U. Responses of platelets to strains of streptococcus sanguis: findings in healthy subjects, Bernard-Soulier, Glanzmann's, and collagen-unresponsive patients. Thromb Haemost. 1987 Apr 7;57(2):222–225. [PubMed] [Google Scholar]
- Sommer P., Gleyzal C., Guerret S., Etienne J., Grimaud J. A. Induction of a putative laminin-binding protein of Streptococcus gordonii in human infective endocarditis. Infect Immun. 1992 Feb;60(2):360–365. doi: 10.1128/iai.60.2.360-365.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sussman J. I., Baron E. J., Tenenbaum M. J., Kaplan M. H., Greenspan J., Facklam R. R., Tyburski M. B., Goldman M. A., Kanzer B. F., Pizzarello R. A. Viridans streptococcal endocarditis: clinical, microbiological, and echocardiographic correlations. J Infect Dis. 1986 Oct;154(4):597–603. doi: 10.1093/infdis/154.4.597. [DOI] [PubMed] [Google Scholar]
- Verhaaren H., Claeys G., Verschraegen G., de Niel C., Leroy J., Clement D. Endocarditis from a dental focus. Importance of oral hygiene in valvar heart disease. Int J Cardiol. 1989 Jun;23(3):343–347. doi: 10.1016/0167-5273(89)90194-0. [DOI] [PubMed] [Google Scholar]
- Zijenah L. S., Barnes M. J. Platelet-reactive sites in human collagens I and III: evidence for cell-recognition sites in collagen unrelated to RGD and like sequences. Thromb Res. 1990 Aug 1;59(3):553–566. doi: 10.1016/0049-3848(90)90415-9. [DOI] [PubMed] [Google Scholar]