Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 2000 Dec;53(12):917–923. doi: 10.1136/jcp.53.12.917

Fetal macrosomia related to maternal poorly controlled type 1 diabetes strongly impairs serum lipoprotein concentrations and composition

H Merzouk 1, M Bouchenak 1, B Loukidi 1, S Madani 1, J Prost 1, J Belleville 1
PMCID: PMC1731132  PMID: 11265176

Abstract

Aims—To determine the effects of fetal macrosomia related to maternal type 1 diabetes on the lipid transport system.

Methods—Serum lipoprotein concentrations and composition and lecithin:cholesterol acyltransferase (LCAT) activity were investigated in macrosomic newborns (mean birth weight, 4650 g; SEM, 90) and their mothers with poorly controlled type 1 diabetes, in appropriate for gestational age newborns (mean birth weight, 3616 g; SEM, 68) and their mothers with well controlled type 1 diabetes, and macrosomic (mean birth weight, 4555 g; SEM, 86) or appropriate for gestational age (mean birth weight, 3290 g; SEM, 45) newborns and their healthy mothers.

Results—In mothers with well controlled type 1 diabetes, serum lipids, apolipoproteins, and lipoproteins were comparable with those of healthy mothers. Similarly, in their infants, these parameters did not differ from those of appropriate for gestational age newborns. Serum triglyceride, very low density lipoprotein (VLDL), apolipoprotein B100 (apo B100), and high density lipoprotein (HDL) triglyceride concentrations were higher, whereas serum apo A-I and HDL3 concentrations were lower in mothers with diabetes and poor glycaemic control than in healthy mothers. Their macrosomic newborns had higher concentrations in all serum lipids and lipoproteins, with high apo A-I and apo B100 values compared with appropriate for gestational age newborns. In macrosomic infants of healthy mothers, there were no significant differences in lipoprotein profiles compared with those of appropriate for gestational age infants. LCAT activity was similar in both groups of mothers and newborns.

Conclusion—Poorly controlled maternal type 1 diabetes and fetal macrosomia were associated with lipoprotein abnormalities. Macrosomic lipoprotein profiles related to poor metabolic control of type 1 diabetes appear to have implications for later metabolic diseases.

Key Words: apolipoproteins • lipids • lipoproteins • lecithin:cholesterol acyltransferase • fetal macrosomia • maternal type 1 diabetes

Full Text

The Full Text of this article is available as a PDF (133.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson A. J., Sobocinski K. A., Freedman D. S., Barboriak J. J., Rimm A. A., Gruchow H. W. Body fat distribution, plasma lipids, and lipoproteins. Arteriosclerosis. 1988 Jan-Feb;8(1):88–94. doi: 10.1161/01.atv.8.1.88. [DOI] [PubMed] [Google Scholar]
  2. Asayama K., Miyao A., Kato K. High-density lipoprotein (HDL), HDL2, and HDL3 cholesterol concentrations determined in serum of newborns, infants, children, adolescents, and adults by use of a micromethod for combined precipitation ultracentrifugation. Clin Chem. 1990 Jan;36(1):129–131. [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. Barker D. J. Fetal origins of coronary heart disease. BMJ. 1995 Jul 15;311(6998):171–174. doi: 10.1136/bmj.311.6998.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buchanan CD, Chun SB. Simple predictive model for flavor production in hadronization. Phys Rev Lett. 1987 Nov 2;59(18):1997–2000. doi: 10.1103/PhysRevLett.59.1997. [DOI] [PubMed] [Google Scholar]
  6. Cowett R. M., Schwartz R. The infant of the diabetic mother. Pediatr Clin North Am. 1982 Oct;29(5):1213–1231. doi: 10.1016/s0031-3955(16)34256-0. [DOI] [PubMed] [Google Scholar]
  7. Després J. P., Moorjani S., Lupien P. J., Tremblay A., Nadeau A., Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis. 1990 Jul-Aug;10(4):497–511. doi: 10.1161/01.atv.10.4.497. [DOI] [PubMed] [Google Scholar]
  8. Dörner G., Plagemann A. Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res. 1994 May;26(5):213–221. doi: 10.1055/s-2007-1001668. [DOI] [PubMed] [Google Scholar]
  9. Enzi G., Inelmen E. M., Caretta F., Villani F., Zanardo V., DeBiasi F. Development of adipose tissue in newborns of gestational-diabetic and insulin-dependent diabetic mothers. Diabetes. 1980 Feb;29(2):100–104. doi: 10.2337/diab.29.2.100. [DOI] [PubMed] [Google Scholar]
  10. Fordyce M. K., Duncan R., Chao R., Christakis M., Hsia S. L., Robertson E., Kafatos A., Christakis G. Cord blood serum in newborns of diabetic mothers. J Chronic Dis. 1983;36(3):263–268. doi: 10.1016/0021-9681(83)90061-9. [DOI] [PubMed] [Google Scholar]
  11. GLOMSET J. A., WRIGHT J. L. SOME PROPERTIES OF A CHOLESTEROL ESTERIFYING ENZYME IN HUMAN PLASMA. Biochim Biophys Acta. 1964 Aug 26;89:266–276. doi: 10.1016/0926-6569(64)90215-9. [DOI] [PubMed] [Google Scholar]
  12. Ginsberg H. N. Lipoprotein physiology in nondiabetic and diabetic states. Relationship to atherogenesis. Diabetes Care. 1991 Sep;14(9):839–855. doi: 10.2337/diacare.14.9.839. [DOI] [PubMed] [Google Scholar]
  13. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hill D. E. Effect of insulin on fetal growth. Semin Perinatol. 1978 Oct;2(4):319–328. [PubMed] [Google Scholar]
  15. Irwin D., O'Looney P. A., Quinet E., Vahouny G. V. Application of SDS gradient polyacrylamide slab gel electrophoresis to analysis of apolipoprotein mass and radioactivity of rat lipoproteins. Atherosclerosis. 1984 Nov;53(2):163–172. doi: 10.1016/0021-9150(84)90192-8. [DOI] [PubMed] [Google Scholar]
  16. Jauhiainen M., Dolphin P. J. Human plasma lecithin-cholesterol acyltransferase. An elucidation of the catalytic mechanism. J Biol Chem. 1986 May 25;261(15):7032–7043. [PubMed] [Google Scholar]
  17. Jiang X. C., Moulin P., Quinet E., Goldberg I. J., Yacoub L. K., Agellon L. B., Compton D., Schnitzer-Polokoff R., Tall A. R. Mammalian adipose tissue and muscle are major sources of lipid transfer protein mRNA. J Biol Chem. 1991 Mar 5;266(7):4631–4639. [PubMed] [Google Scholar]
  18. Kalkhoff R. K., Kandaraki E., Morrow P. G., Mitchell T. H., Kelber S., Borkowf H. I. Relationship between neonatal birth weight and maternal plasma amino acid profiles in lean and obese nondiabetic women and in type I diabetic pregnant women. Metabolism. 1988 Mar;37(3):234–239. doi: 10.1016/0026-0495(88)90101-1. [DOI] [PubMed] [Google Scholar]
  19. Kaplan L. A., Cline D., Gartside P., Burstein S., Sperling M., Stein E. A. Hemoglobin A1 in hemolysates from healthy and insulin-dependent diabetic children, as determined with a temperature-controlled minicolumn assay. Clin Chem. 1982 Jan;28(1):13–18. [PubMed] [Google Scholar]
  20. Kilby M. D., Neary R. H., Mackness M. I., Durrington P. N. Fetal and maternal lipoprotein metabolism in human pregnancy complicated by type I diabetes mellitus. J Clin Endocrinol Metab. 1998 May;83(5):1736–1741. doi: 10.1210/jcem.83.5.4783. [DOI] [PubMed] [Google Scholar]
  21. Knipping G. Isolation and properties of porcine lecithin:cholesterol acyltransferase. Eur J Biochem. 1986 Jan 15;154(2):289–294. doi: 10.1111/j.1432-1033.1986.tb09395.x. [DOI] [PubMed] [Google Scholar]
  22. Knopp R. H., Bergelin R. O., Wahl P. W., Walden C. E. Relationships of infant birth size to maternal lipoproteins, apoproteins, fuels, hormones, clinical chemistries, and body weight at 36 weeks gestation. Diabetes. 1985 Jun;34 (Suppl 2):71–77. doi: 10.2337/diab.34.2.s71. [DOI] [PubMed] [Google Scholar]
  23. Knopp R. H., Montes A., Childs M., Li J. R., Mabuchi H. Metabolic adjustments in normal and diabetic pregnancy. Clin Obstet Gynecol. 1981 Mar;24(1):21–49. doi: 10.1097/00003081-198103000-00006. [DOI] [PubMed] [Google Scholar]
  24. Knopp R. H., Van Allen M. I., McNeely M., Walden C. E., Plovie B., Shiota K., Brown Z. Effect of insulin-dependent diabetes on plasma lipoproteins in diabetic pregnancy. J Reprod Med. 1993 Sep;38(9):703–710. [PubMed] [Google Scholar]
  25. Kostner G. M., Knipping G., Groener J. E., Zechner R., Dieplinger H. The role of LCAT and cholesteryl ester transfer proteins for the HDL and LDL structure and metabolism. Adv Exp Med Biol. 1987;210:79–86. doi: 10.1007/978-1-4684-1268-0_12. [DOI] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Macfarlane C. M., Tsakalakos N. The extended Pedersen hypothesis. Clin Physiol Biochem. 1988;6(2):68–73. [PubMed] [Google Scholar]
  28. Marcel Y. L. Lecithin: cholesterol acyltransferase and intravascular cholesterol transport. Adv Lipid Res. 1982;19:85–136. doi: 10.1016/b978-0-12-024919-0.50009-6. [DOI] [PubMed] [Google Scholar]
  29. Merzouk H., Lamri M. Y., Meghelli-Bouchenak M., Korso N., Prost J., Belleville J. Serum lecithin: cholesterol acyltransferase activity and HDL2 and HDL3 composition in small for gestational age newborns. Acta Paediatr. 1997 May;86(5):528–532. doi: 10.1111/j.1651-2227.1997.tb08925.x. [DOI] [PubMed] [Google Scholar]
  30. Montelongo A., Lasunción M. A., Pallardo L. F., Herrera E. Longitudinal study of plasma lipoproteins and hormones during pregnancy in normal and diabetic women. Diabetes. 1992 Dec;41(12):1651–1659. doi: 10.2337/diab.41.12.1651. [DOI] [PubMed] [Google Scholar]
  31. Morrison J. A., Sprecher D., McMahon R. P., Simon J., Schreiber G. B., Khoury P. R. Obesity and high-density lipoprotein cholesterol in black and white 9- and 10-year-old girls: The National Heart, Lung, and Blood Institute Growth and Health Study. Metabolism. 1996 Apr;45(4):469–474. doi: 10.1016/s0026-0495(96)90221-8. [DOI] [PubMed] [Google Scholar]
  32. Neary R. H., Kilby M. D., Kumpatula P., Game F. L., Bhatnagar D., Durrington P. N., O'Brien P. M. Fetal and maternal lipoprotein metabolism in human pregnancy. Clin Sci (Lond) 1995 Mar;88(3):311–318. doi: 10.1042/cs0880311. [DOI] [PubMed] [Google Scholar]
  33. Papadopoulos A., Hamosh M., Chowdhry P., Scanlon J. W., Hamosh P. Lecithin-cholesterol acyltransferase in newborn infants: low activity level in preterm infants. J Pediatr. 1988 Nov;113(5):896–898. doi: 10.1016/s0022-3476(88)80027-1. [DOI] [PubMed] [Google Scholar]
  34. Pettitt D. J., Baird H. R., Aleck K. A., Bennett P. H., Knowler W. C. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med. 1983 Feb 3;308(5):242–245. doi: 10.1056/NEJM198302033080502. [DOI] [PubMed] [Google Scholar]
  35. Plagemann A., Harder T., Kohlhoff R., Rohde W., Dörner G. Glucose tolerance and insulin secretion in children of mothers with pregestational IDDM or gestational diabetes. Diabetologia. 1997 Sep;40(9):1094–1100. doi: 10.1007/s001250050792. [DOI] [PubMed] [Google Scholar]
  36. Rosenn B., Tsang R. C. The effects of maternal diabetes on the fetus and neonate. Ann Clin Lab Sci. 1991 May-Jun;21(3):153–170. [PubMed] [Google Scholar]
  37. Rovamo L. M., Taskinen M. R., Kuusi T., Raivio K. O. Postheparin plasma lipoprotein and hepatic lipase activities in hyperinsulinemic infants of diabetic mothers and in large-for-date infants at birth. Pediatr Res. 1986 Jul;20(7):623–627. doi: 10.1203/00006450-198607000-00009. [DOI] [PubMed] [Google Scholar]
  38. Shafrir E., Barash V. Placental function in maternal-fetal fat transport in diabetes. Biol Neonate. 1987;51(2):102–112. doi: 10.1159/000242639. [DOI] [PubMed] [Google Scholar]
  39. Shafrir E., Khassis S. Maternal-fetal fat transport versus new fat synthesis in the pregnant diabetic rat. Diabetologia. 1982 Feb;22(2):111–117. doi: 10.1007/BF00254839. [DOI] [PubMed] [Google Scholar]
  40. Sniderman A. D., Cianflone K. Substrate delivery as a determinant of hepatic apoB secretion. Arterioscler Thromb. 1993 May;13(5):629–636. doi: 10.1161/01.atv.13.5.629. [DOI] [PubMed] [Google Scholar]
  41. Spellacy W. N., Miller S., Winegar A., Peterson P. Q. Macrosomia--maternal characteristics and infant complications. Obstet Gynecol. 1985 Aug;66(2):158–161. [PubMed] [Google Scholar]
  42. Vohr B. R., Lipsitt L. P., Oh W. Somatic growth of children of diabetic mothers with reference to birth size. J Pediatr. 1980 Aug;97(2):196–199. doi: 10.1016/s0022-3476(80)80473-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES