Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Apr;63(4):1183–1187. doi: 10.1128/iai.63.4.1183-1187.1995

Activation of human THP-1 cells and rat bone marrow-derived macrophages by Helicobacter pylori lipopolysaccharide.

G I Pérez-Pérez 1, V L Shepherd 1, J D Morrow 1, M J Blaser 1
PMCID: PMC173132  PMID: 7890370

Abstract

The mechanism by which Helicobacter pylori, which has little or no invasive activity, induces gastric-tissue inflammation and injury has not been well characterized. We have previously demonstrated that water-extracted proteins of H. pylori are capable of activating human monocytes by a lipopolysaccharide (LPS)-independent mechanism. We have now compared activation of macrophages by purified LPS from H. pylori and from Escherichia coli. LPS was prepared by phenol-water extraction from H. pylori 88-23 and from E. coli O55. THP-1, a human promyelomonocytic cell line, and macrophages derived from rat bone marrow each were incubated with the LPS preparations, and cell culture supernatants were assayed for production of tumor necrosis factor alpha (TNF-alpha), prostaglandin E2 (PGE2), and nitric oxide. THP-1 cells showed maximal activation by the LPS molecules after cell differentiation was induced by phorbol 12-myristate 13-acetate. Maximal TNF-alpha and PGE2 production occurred by 6 and 18 h, respectively, in both types of cells. In contrast, NO was produced by rat bone marrow-derived macrophages only and was maximal at 18 h. The minimum concentration of purified LPS required to induce TNF-alpha, PGE2, and NO responses in both types of cells was 2,000- to 30,000-fold higher for H. pylori than for E. coli. Purified LPS from three other H. pylori strains with different polysaccharide side chain lengths showed a similarly low level of activity, and polymyxin B treatment markedly reduced activity as well, suggesting that activation was a lipid A phenomenon. These results indicate the low biological activity of H. pylori LPS in mediating macrophage activation.

Full Text

The Full Text of this article is available as a PDF (200.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaser M. J. Helicobacter pylori and the pathogenesis of gastroduodenal inflammation. J Infect Dis. 1990 Apr;161(4):626–633. doi: 10.1093/infdis/161.4.626. [DOI] [PubMed] [Google Scholar]
  2. Blaser M. J. Hypotheses on the pathogenesis and natural history of Helicobacter pylori-induced inflammation. Gastroenterology. 1992 Feb;102(2):720–727. doi: 10.1016/0016-5085(92)90126-j. [DOI] [PubMed] [Google Scholar]
  3. Blaser M. J., Parsonnet J. Parasitism by the "slow" bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia. J Clin Invest. 1994 Jul;94(1):4–8. doi: 10.1172/JCI117336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christman J. W., Christman B. W., Shepherd V. L., Rinaldo J. E. Regulation of alveolar macrophage production of chemoattractants by leukotriene B4 and prostaglandin E2. Am J Respir Cell Mol Biol. 1991 Sep;5(3):297–304. doi: 10.1165/ajrcmb/5.3.297. [DOI] [PubMed] [Google Scholar]
  5. Cover T. L., Dooley C. P., Blaser M. J. Characterization of and human serologic response to proteins in Helicobacter pylori broth culture supernatants with vacuolizing cytotoxin activity. Infect Immun. 1990 Mar;58(3):603–610. doi: 10.1128/iai.58.3.603-610.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crabtree J. E., Wyatt J. I., Trejdosiewicz L. K., Peichl P., Nichols P. H., Ramsay N., Primrose J. N., Lindley I. J. Interleukin-8 expression in Helicobacter pylori infected, normal, and neoplastic gastroduodenal mucosa. J Clin Pathol. 1994 Jan;47(1):61–66. doi: 10.1136/jcp.47.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Geis G., Leying H., Suerbaum S., Opferkuch W. Unusual fatty acid substitution in lipids and lipopolysaccharides of Helicobacter pylori. J Clin Microbiol. 1990 May;28(5):930–932. doi: 10.1128/jcm.28.5.930-932.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  9. Hentschel E., Brandstätter G., Dragosics B., Hirschl A. M., Nemec H., Schütze K., Taufer M., Wurzer H. Effect of ranitidine and amoxicillin plus metronidazole on the eradication of Helicobacter pylori and the recurrence of duodenal ulcer. N Engl J Med. 1993 Feb 4;328(5):308–312. doi: 10.1056/NEJM199302043280503. [DOI] [PubMed] [Google Scholar]
  10. Karnes W. E., Jr, Samloff I. M., Siurala M., Kekki M., Sipponen P., Kim S. W., Walsh J. H. Positive serum antibody and negative tissue staining for Helicobacter pylori in subjects with atrophic body gastritis. Gastroenterology. 1991 Jul;101(1):167–174. doi: 10.1016/0016-5085(91)90474-y. [DOI] [PubMed] [Google Scholar]
  11. Lüderitz O., Staub A. M., Westphal O. Immunochemistry of O and R antigens of Salmonella and related Enterobacteriaceae. Bacteriol Rev. 1966 Mar;30(1):192–255. doi: 10.1128/br.30.1.192-255.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mai U. E., Perez-Perez G. I., Allen J. B., Wahl S. M., Blaser M. J., Smith P. D. Surface proteins from Helicobacter pylori exhibit chemotactic activity for human leukocytes and are present in gastric mucosa. J Exp Med. 1992 Feb 1;175(2):517–525. doi: 10.1084/jem.175.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mai U. E., Perez-Perez G. I., Wahl L. M., Wahl S. M., Blaser M. J., Smith P. D. Soluble surface proteins from Helicobacter pylori activate monocytes/macrophages by lipopolysaccharide-independent mechanism. J Clin Invest. 1991 Mar;87(3):894–900. doi: 10.1172/JCI115095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marletta M. A. Nitric oxide: biosynthesis and biological significance. Trends Biochem Sci. 1989 Dec;14(12):488–492. doi: 10.1016/0968-0004(89)90181-3. [DOI] [PubMed] [Google Scholar]
  15. Molina J. M., Scadden D. T., Byrn R., Dinarello C. A., Groopman J. E. Production of tumor necrosis factor alpha and interleukin 1 beta by monocytic cells infected with human immunodeficiency virus. J Clin Invest. 1989 Sep;84(3):733–737. doi: 10.1172/JCI114230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moran A. P., Helander I. M., Kosunen T. U. Compositional analysis of Helicobacter pylori rough-form lipopolysaccharides. J Bacteriol. 1992 Feb;174(4):1370–1377. doi: 10.1128/jb.174.4.1370-1377.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morrison D. C., Kline L. F. Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides (LPS). J Immunol. 1977 Jan;118(1):362–368. [PubMed] [Google Scholar]
  18. Muotiala A., Helander I. M., Pyhälä L., Kosunen T. U., Moran A. P. Low biological activity of Helicobacter pylori lipopolysaccharide. Infect Immun. 1992 Apr;60(4):1714–1716. doi: 10.1128/iai.60.4.1714-1716.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nomura A., Stemmermann G. N., Chyou P. H., Perez-Perez G. I., Blaser M. J. Helicobacter pylori infection and the risk for duodenal and gastric ulceration. Ann Intern Med. 1994 Jun 15;120(12):977–981. doi: 10.7326/0003-4819-120-12-199406150-00001. [DOI] [PubMed] [Google Scholar]
  20. Parsons W. G., 3rd, Roberts L. J., 2nd Transformation of prostaglandin D2 to isomeric prostaglandin F2 compounds by human eosinophils. A potential mast cell-eosinophil interaction. J Immunol. 1988 Oct 1;141(7):2413–2419. [PubMed] [Google Scholar]
  21. Perez-Perez G. I., Blaser M. J. Conservation and diversity of Campylobacter pyloridis major antigens. Infect Immun. 1987 May;55(5):1256–1263. doi: 10.1128/iai.55.5.1256-1263.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Phillips W. A., Hamilton J. A. Phorbol ester-stimulated superoxide production by murine bone marrow-derived macrophages requires preexposure to cytokines. J Immunol. 1989 Apr 1;142(7):2445–2449. [PubMed] [Google Scholar]
  23. Pérez-Pérez G. I., Brown W. R., Cover T. L., Dunn B. E., Cao P., Blaser M. J. Correlation between serological and mucosal inflammatory responses to Helicobacter pylori. Clin Diagn Lab Immunol. 1994 May;1(3):325–329. doi: 10.1128/cdli.1.3.325-329.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Raetz C. R. Bacterial endotoxins: extraordinary lipids that activate eucaryotic signal transduction. J Bacteriol. 1993 Sep;175(18):5745–5753. doi: 10.1128/jb.175.18.5745-5753.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rugge M., Di Mario F., Cassaro M., Baffa R., Farinati F., Rubio J., Jr, Ninfo V. Pathology of the gastric antrum and body associated with Helicobacter pylori infection in non-ulcerous patients: is the bacterium a promoter of intestinal metaplasia? Histopathology. 1993 Jan;22(1):9–15. doi: 10.1111/j.1365-2559.1993.tb00062.x. [DOI] [PubMed] [Google Scholar]
  26. Sanduja S. K., Mehta K., Xu X. M., Hsu S. M., Sanduja R., Wu K. K. Differentiation-associated expression of prostaglandin H and thromboxane A synthases in monocytoid leukemia cell lines. Blood. 1991 Dec 15;78(12):3178–3185. [PubMed] [Google Scholar]
  27. Schneemann M., Schoedon G., Hofer S., Blau N., Guerrero L., Schaffner A. Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J Infect Dis. 1993 Jun;167(6):1358–1363. doi: 10.1093/infdis/167.6.1358. [DOI] [PubMed] [Google Scholar]
  28. Tsuchiya S., Kobayashi Y., Goto Y., Okumura H., Nakae S., Konno T., Tada K. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 1982 Apr;42(4):1530–1536. [PubMed] [Google Scholar]
  29. Tsuchiya S., Yamabe M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 1980 Aug;26(2):171–176. doi: 10.1002/ijc.2910260208. [DOI] [PubMed] [Google Scholar]
  30. WARAVDEKAR V. S., SASLAW L. D. A sensitive colorimetric method for the estimation of 2-deoxy sugars with the use of the malonaldehyde-thiobarbituric acid reaction. J Biol Chem. 1959 Aug;234(8):1945–1950. [PubMed] [Google Scholar]
  31. Weintraub A., Zähringer U., Wollenweber H. W., Seydel U., Rietschel E. T. Structural characterization of the lipid A component of Bacteroides fragilis strain NCTC 9343 lipopolysaccharide. Eur J Biochem. 1989 Aug 1;183(2):425–431. doi: 10.1111/j.1432-1033.1989.tb14945.x. [DOI] [PubMed] [Google Scholar]
  32. Ziegler-Heitbrock H. W., Ulevitch R. J. CD14: cell surface receptor and differentiation marker. Immunol Today. 1993 Mar;14(3):121–125. doi: 10.1016/0167-5699(93)90212-4. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES