Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 2001 Dec;54(12):933–939. doi: 10.1136/jcp.54.12.933

MUC1 (EMA) is preferentially expressed by ALK positive anaplastic large cell lymphoma, in the normally glycosylated or only partly hypoglycosylated form

B Ten 1, F Snijdewint 1, S von Mensdorff-Pou 1, R Poort-Keesom 1, J Oudejans 1, J Meijer 1, R Willemze 1, J Hilgers 1, C Meijer 1
PMCID: PMC1731330  PMID: 11729213

Abstract

Aims—To investigate whether MUC1 mucin, a high molecular weight transmembrane glycoprotein, also known as epithelial membrane antigen (EMA), differs in its expression and degree of glycosylation between anaplastic large cell lymphoma (ALCL) and classic Hodgkin's disease (HD), and whether MUC1 immunostaining can be used to differentiate between CD30 positive large cell lymphomas.

Methods/Results—Using five different monoclonal antibodies (E29/anti-EMA, DF3, 139H2, VU-4H5, and SM3) that distinguish between various MUC1 glycoforms, high MUC1 expression (50–95% of tumour cells positive) was found in 13 of 17 anaplastic lymphoma kinase (ALK) positive systemic nodal ALCLs, and in one of 20 cases of classic HD. Scattered or focal staining (< 25% of tumour cells) was seen in two additional ALK positive systemic ALCLs, two additional classic HD cases, and in three of 20 cases of ALK negative systemic nodal ALCL. Primary cutaneous ALCL showed no staining with the anti-MUC1 antibodies. Antibodies detecting hypoglycosylated MUC1 were found to be absent in all lymphomas (SM3) or present in only six of 15 ALK positive ALCLs (VU-4H5).

Conclusions—MUC1 is preferentially expressed by a subtype of systemic nodal ALCL, characterised by ALK expression, but is found in only a few cases of classic HD and ALK negative ALCL. Therefore, although MUC1 could be used in a panel of markers for CD30 positive lymphomas, it is probably not a valuable tool to differentiate between ALK negative CD30 positive large cell lymphomas. Finally, the degree of MUC1 glycosylation in lymphomas is relatively high, compared with the aberrant hypoglycosylation found in adenocarcinomas.

Key Words: MUC1 (epithelial membrane antigen) glycoforms • anaplastic large cell lymphoma • ALK • Hodgkin's disease

Full Text

The Full Text of this article is available as a PDF (190.7 KB).

graphic file with name 0109.f1.jpg

Figure 1 Extended MUC1 mucin molecule on a cell surface membrane with O-linked and N-linked glycosylated side chains. The insert shows a MUC1 20 mer single repeat peptide with O-linked hypoglycosylated side chains.

graphic file with name 0109.f2.jpg

Figure 2 (A) ALK positive systemic nodal anaplastic large cell lymphoma (ALCL) case, showing membranous MUC1 expression in most of the tumour cells with the monoclonal antibody E29 (anti-EMA). (B) Another ALK positive systemic nodal ALCL case, showing both membranous, cytoplasmic, and occasional dot-like staining of the Golgi area of tumour cells with monoclonal antibody E29. (C) ALK negative systemic nodal ALCL case, showing tumour cells negative for antibody DF3, whereas plasma cells are positive, serving as an internal positive control. (D) ALK positive systemic nodal ALCL case, showing cytoplasmic and sometimes membranous staining with the VU-4H5 antibody. (E) Nodular sclerosing case of classic Hodgkin's disease, showing DF3 staining in a typical Reed-Sternberg tumour cell.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal B., Krantz M. J., Parker J., Longenecker B. M. Expression of MUC1 mucin on activated human T cells: implications for a role of MUC1 in normal immune regulation. Cancer Res. 1998 Sep 15;58(18):4079–4081. [PubMed] [Google Scholar]
  2. Agrawal B., Krantz M. J., Reddish M. A., Longenecker B. M. Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nat Med. 1998 Jan;4(1):43–49. doi: 10.1038/nm0198-043. [DOI] [PubMed] [Google Scholar]
  3. Barnd D. L., Lan M. S., Metzgar R. S., Finn O. J. Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7159–7163. doi: 10.1073/pnas.86.18.7159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benharroch D., Meguerian-Bedoyan Z., Lamant L., Amin C., Brugières L., Terrier-Lacombe M. J., Haralambieva E., Pulford K., Pileri S., Morris S. W. ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood. 1998 Mar 15;91(6):2076–2084. [PubMed] [Google Scholar]
  5. Brugger W., Bühring H. J., Grünebach F., Vogel W., Kaul S., Müller R., Brümmendorf T. H., Ziegler B. L., Rappold I., Brossart P. Expression of MUC-1 epitopes on normal bone marrow: implications for the detection of micrometastatic tumor cells. J Clin Oncol. 1999 May;17(5):1535–1544. doi: 10.1200/JCO.1999.17.5.1535. [DOI] [PubMed] [Google Scholar]
  6. Burchell J., Gendler S., Taylor-Papadimitriou J., Girling A., Lewis A., Millis R., Lamport D. Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res. 1987 Oct 15;47(20):5476–5482. [PubMed] [Google Scholar]
  7. Burchell J., Taylor-Papadimitriou J., Boshell M., Gendler S., Duhig T. A short sequence, within the amino acid tandem repeat of a cancer-associated mucin, contains immunodominant epitopes. Int J Cancer. 1989 Oct 15;44(4):691–696. doi: 10.1002/ijc.2910440423. [DOI] [PubMed] [Google Scholar]
  8. Cao Y., Karsten U., Hilgers J. Immunohistochemical characterization of a panel of 56 antibodies with normal human small intestine, colon, and breast tissues. Tumour Biol. 1998;19 (Suppl 1):88–99. doi: 10.1159/000056509. [DOI] [PubMed] [Google Scholar]
  9. Ceriani R. L., Thompson K., Peterson J. A., Abraham S. Surface differentiation antigens of human mammary epithelial cells carried on the human milk fat globule. Proc Natl Acad Sci U S A. 1977 Feb;74(2):582–586. doi: 10.1073/pnas.74.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chadburn A., Inghirami G., Knowles D. M. T-cell activation-associated antigen expression by neoplastic T-cells. Hematol Pathol. 1992;6(3):131–141. [PubMed] [Google Scholar]
  11. Chan A. K., Lockhart D. C., von Bernstorff W., Spanjaard R. A., Joo H. G., Eberlein T. J., Goedegebuure P. S. Soluble MUC1 secreted by human epithelial cancer cells mediates immune suppression by blocking T-cell activation. Int J Cancer. 1999 Aug 27;82(5):721–726. doi: 10.1002/(sici)1097-0215(19990827)82:5<721::aid-ijc16>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  12. Chittal S. M., Caverivière P., Schwarting R., Gerdes J., Al Saati T., Rigal-Huguet F., Stein H., Delsol G. Monoclonal antibodies in the diagnosis of Hodgkin's disease. The search for a rational panel. Am J Surg Pathol. 1988 Jan;12(1):9–21. doi: 10.1097/00000478-198801000-00002. [DOI] [PubMed] [Google Scholar]
  13. Cordell J., Richardson T. C., Pulford K. A., Ghosh A. K., Gatter K. C., Heyderman E., Mason D. Y. Production of monoclonal antibodies against human epithelial membrane antigen for use in diagnostic immunocytochemistry. Br J Cancer. 1985 Sep;52(3):347–354. doi: 10.1038/bjc.1985.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DeCoteau J. F., Butmarc J. R., Kinney M. C., Kadin M. E. The t(2;5) chromosomal translocation is not a common feature of primary cutaneous CD30+ lymphoproliferative disorders: comparison with anaplastic large-cell lymphoma of nodal origin. Blood. 1996 Apr 15;87(8):3437–3441. [PubMed] [Google Scholar]
  15. Delsol G., Al Saati T., Gatter K. C., Gerdes J., Schwarting R., Caveriviere P., Rigal-Huguet F., Robert A., Stein H., Mason D. Y. Coexpression of epithelial membrane antigen (EMA), Ki-1, and interleukin-2 receptor by anaplastic large cell lymphomas. Diagnostic value in so-called malignant histiocytosis. Am J Pathol. 1988 Jan;130(1):59–70. [PMC free article] [PubMed] [Google Scholar]
  16. Delsol G., Gatter K. C., Stein H., Erber W. N., Pulford K. A., Zinne K., Mason D. Y. Human lymphoid cells express epithelial membrane antigen. Implications for diagnosis of human neoplasms. Lancet. 1984 Nov 17;2(8412):1124–1129. doi: 10.1016/s0140-6736(84)91558-7. [DOI] [PubMed] [Google Scholar]
  17. Dong Y., Walsh M. D., Cummings M. C., Wright R. G., Khoo S. K., Parsons P. G., McGuckin M. A. Expression of MUC1 and MUC2 mucins in epithelial ovarian tumours. J Pathol. 1997 Nov;183(3):311–317. doi: 10.1002/(SICI)1096-9896(199711)183:3<311::AID-PATH917>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  18. Dukers D. F., ten Berge R. L., Oudejans J. J., Pulford K., Hayes D., Miseré J. F., Ossenkoppele G. J., Jaspars L. H., Willemze R., Meijer C. J. A cytotoxic phenotype does not predict clinical outcome in anaplastic large cell lymphomas. J Clin Pathol. 1999 Feb;52(2):129–136. doi: 10.1136/jcp.52.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Falini B., Bigerna B., Fizzotti M., Pulford K., Pileri S. A., Delsol G., Carbone A., Paulli M., Magrini U., Menestrina F. ALK expression defines a distinct group of T/null lymphomas ("ALK lymphomas") with a wide morphological spectrum. Am J Pathol. 1998 Sep;153(3):875–886. doi: 10.1016/S0002-9440(10)65629-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Falini B., Pileri S., Zinzani P. L., Carbone A., Zagonel V., Wolf-Peeters C., Verhoef G., Menestrina F., Todeschini G., Paulli M. ALK+ lymphoma: clinico-pathological findings and outcome. Blood. 1999 Apr 15;93(8):2697–2706. [PubMed] [Google Scholar]
  21. Felgar R. E., Salhany K. E., Macon W. R., Pietra G. G., Kinney M. C. The expression of TIA-1+ cytolytic-type granules and other cytolytic lymphocyte-associated markers in CD30+ anaplastic large cell lymphomas (ALCL): correlation with morphology, immunophenotype, ultrastructure, and clinical features. Hum Pathol. 1999 Feb;30(2):228–236. doi: 10.1016/s0046-8177(99)90281-2. [DOI] [PubMed] [Google Scholar]
  22. Filippa D. A., Ladanyi M., Wollner N., Straus D. J., O'Brien J. P., Portlock C., Gangi M., Sun M. CD30 (Ki-1)-positive malignant lymphomas: clinical, immunophenotypic, histologic, and genetic characteristics and differences with Hodgkin's disease. Blood. 1996 Apr 1;87(7):2905–2917. [PubMed] [Google Scholar]
  23. Gascoyne R. D., Aoun P., Wu D., Chhanabhai M., Skinnider B. F., Greiner T. C., Morris S. W., Connors J. M., Vose J. M., Viswanatha D. S. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999 Jun 1;93(11):3913–3921. [PubMed] [Google Scholar]
  24. Gendler S. J., Lancaster C. A., Taylor-Papadimitriou J., Duhig T., Peat N., Burchell J., Pemberton L., Lalani E. N., Wilson D. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem. 1990 Sep 5;265(25):15286–15293. [PubMed] [Google Scholar]
  25. Gendler S., Taylor-Papadimitriou J., Duhig T., Rothbard J., Burchell J. A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J Biol Chem. 1988 Sep 15;263(26):12820–12823. [PubMed] [Google Scholar]
  26. Guddo F., Giatromanolaki A., Patriarca C., Hilkens J., Reina C., Alfano R. M., Vignola A. M., Koukourakis M. I., Gambacorta M., Pruneri G. Depolarized expression of episialin (EMA, MUC1) in lung adenocarcinoma is associated with tumor progression. Anticancer Res. 1998 May-Jun;18(3B):1915–1920. [PubMed] [Google Scholar]
  27. Hanisch F. G. Specificity clusters of MUC1-reactive mouse monoclonal antibodies. Tumour Biol. 1998;19 (Suppl 1):111–117. doi: 10.1159/000056511. [DOI] [PubMed] [Google Scholar]
  28. Harris N. L., Jaffe E. S., Diebold J., Flandrin G., Muller-Hermelink H. K., Vardiman J., Lister T. A., Bloomfield C. D. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol. 1999 Dec;17(12):3835–3849. doi: 10.1200/JCO.1999.17.12.3835. [DOI] [PubMed] [Google Scholar]
  29. Harris N. L., Jaffe E. S., Stein H., Banks P. M., Chan J. K., Cleary M. L., Delsol G., De Wolf-Peeters C., Falini B., Gatter K. C. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994 Sep 1;84(5):1361–1392. [PubMed] [Google Scholar]
  30. Heyderman E., Steele K., Ormerod M. G. A new antigen on the epithelial membrane: its immunoperoxidase localisation in normal and neoplastic tissue. J Clin Pathol. 1979 Jan;32(1):35–39. doi: 10.1136/jcp.32.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hilkens J., Buijs F., Ligtenberg M. Complexity of MAM-6, an epithelial sialomucin associated with carcinomas. Cancer Res. 1989 Feb 15;49(4):786–793. [PubMed] [Google Scholar]
  32. Hiltbold E. M., Alter M. D., Ciborowski P., Finn O. J. Presentation of MUC1 tumor antigen by class I MHC and CTL function correlate with the glycosylation state of the protein taken Up by dendritic cells. Cell Immunol. 1999 Jun 15;194(2):143–149. doi: 10.1006/cimm.1999.1512. [DOI] [PubMed] [Google Scholar]
  33. Hugh J., Poppema S. Immunophenotype of Reed-Sternberg cells. Int Rev Exp Pathol. 1992;33:81–114. [PubMed] [Google Scholar]
  34. Jerome K. R., Barnd D. L., Bendt K. M., Boyer C. M., Taylor-Papadimitriou J., McKenzie I. F., Bast R. C., Jr, Finn O. J. Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res. 1991 Jun 1;51(11):2908–2916. [PubMed] [Google Scholar]
  35. Ladanyi M., Cavalchire G., Morris S. W., Downing J., Filippa D. A. Reverse transcriptase polymerase chain reaction for the Ki-1 anaplastic large cell lymphoma-associated t(2;5) translocation in Hodgkin's disease. Am J Pathol. 1994 Dec;145(6):1296–1300. [PMC free article] [PubMed] [Google Scholar]
  36. Lamant L., Meggetto F., al Saati T., Brugières L., de Paillerets B. B., Dastugue N., Bernheim A., Rubie H., Terrier-Lacombe M. J., Robert A. High incidence of the t(2;5)(p23;q35) translocation in anaplastic large cell lymphoma and its lack of detection in Hodgkin's disease. Comparison of cytogenetic analysis, reverse transcriptase-polymerase chain reaction, and P-80 immunostaining. Blood. 1996 Jan 1;87(1):284–291. [PubMed] [Google Scholar]
  37. Leoncini L., Del Vecchio M. T., Kraft R., Megha T., Barbini P., Cevenini G., Poggi S., Pileri S., Tosi P., Cottier H. Hodgkin's disease and CD30-positive anaplastic large cell lymphomas--a continuous spectrum of malignant disorders. A quantitative morphometric and immunohistologic study. Am J Pathol. 1990 Nov;137(5):1047–1057. [PMC free article] [PubMed] [Google Scholar]
  38. Ligtenberg M. J., Vos H. L., Gennissen A. M., Hilkens J. Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J Biol Chem. 1990 Apr 5;265(10):5573–5578. [PubMed] [Google Scholar]
  39. Morris S. W., Kirstein M. N., Valentine M. B., Dittmer K. G., Shapiro D. N., Saltman D. L., Look A. T. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994 Mar 4;263(5151):1281–1284. doi: 10.1126/science.8122112. [DOI] [PubMed] [Google Scholar]
  40. Nakagawa A., Nakamura S., Ito M., Shiota M., Mori S., Suchi T. CD30-positive anaplastic large cell lymphoma in childhood: expression of p80npm/alk and absence of Epstein-Barr virus. Mod Pathol. 1997 Mar;10(3):210–215. [PubMed] [Google Scholar]
  41. Nakamori S., Ota D. M., Cleary K. R., Shirotani K., Irimura T. MUC1 mucin expression as a marker of progression and metastasis of human colorectal carcinoma. Gastroenterology. 1994 Feb;106(2):353–361. doi: 10.1016/0016-5085(94)90592-4. [DOI] [PubMed] [Google Scholar]
  42. Nakamura S., Shiota M., Nakagawa A., Yatabe Y., Kojima M., Motoori T., Suzuki R., Kagami Y., Ogura M., Morishima Y. Anaplastic large cell lymphoma: a distinct molecular pathologic entity: a reappraisal with special reference to p80(NPM/ALK) expression. Am J Surg Pathol. 1997 Dec;21(12):1420–1432. doi: 10.1097/00000478-199712000-00004. [DOI] [PubMed] [Google Scholar]
  43. Noto H., Takahashi T., Makiguchi Y., Hayashi T., Hinoda Y., Imai K. Cytotoxic T lymphocytes derived from bone marrow mononuclear cells of multiple myeloma patients recognize an underglycosylated form of MUC1 mucin. Int Immunol. 1997 May;9(5):791–798. doi: 10.1093/intimm/9.5.791. [DOI] [PubMed] [Google Scholar]
  44. Patton S., Gendler S. J., Spicer A. P. The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim Biophys Acta. 1995 Dec 20;1241(3):407–423. doi: 10.1016/0304-4157(95)00014-3. [DOI] [PubMed] [Google Scholar]
  45. Perey L., Hayes D. F., Maimonis P., Abe M., O'Hara C., Kufe D. W. Tumor selective reactivity of a monoclonal antibody prepared against a recombinant peptide derived from the DF3 human breast carcinoma-associated antigen. Cancer Res. 1992 May 1;52(9):2563–2568. [PubMed] [Google Scholar]
  46. Pileri S., Bocchia M., Baroni C. D., Martelli M., Falini B., Sabattini E., Gherlinzoni F., Amadori S., Poggi S., Mazza P. Anaplastic large cell lymphoma (CD30 +/Ki-1+): results of a prospective clinico-pathological study of 69 cases. Br J Haematol. 1994 Mar;86(3):513–523. doi: 10.1111/j.1365-2141.1994.tb04781.x. [DOI] [PubMed] [Google Scholar]
  47. Price M. R., Rye P. D., Petrakou E., Murray A., Brady K., Imai S., Haga S., Kiyozuka Y., Schol D., Meulenbroek M. F. Summary report on the ISOBM TD-4 Workshop: analysis of 56 monoclonal antibodies against the MUC1 mucin. San Diego, Calif., November 17-23, 1996. Tumour Biol. 1998;19 (Suppl 1):1–20. doi: 10.1159/000056500. [DOI] [PubMed] [Google Scholar]
  48. Pulford K., Lamant L., Morris S. W., Butler L. H., Wood K. M., Stroud D., Delsol G., Mason D. Y. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood. 1997 Feb 15;89(4):1394–1404. [PubMed] [Google Scholar]
  49. Regimbald L. H., Pilarski L. M., Longenecker B. M., Reddish M. A., Zimmermann G., Hugh J. C. The breast mucin MUCI as a novel adhesion ligand for endothelial intercellular adhesion molecule 1 in breast cancer. Cancer Res. 1996 Sep 15;56(18):4244–4249. [PubMed] [Google Scholar]
  50. Sarris A. H., Luthra R., Papadimitracopoulou V., Waasdorp M., Dimopoulos M. A., McBride J. A., Cabanillas F., Duvic M., Deisseroth A., Morris S. W. Amplification of genomic DNA demonstrates the presence of the t(2;5) (p23;q35) in anaplastic large cell lymphoma, but not in other non-Hodgkin's lymphomas, Hodgkin's disease, or lymphomatoid papulosis. Blood. 1996 Sep 1;88(5):1771–1779. [PubMed] [Google Scholar]
  51. Schol D. J., Meulenbroek M. F., Snijdewint F. G., von Mensdorff-Pouilly S., Verstraeten R. A., Murakami F., Kenemans P., Hilgers J. 'Epitope fingerprinting' using overlapping 20-mer peptides of the MUC1 tandem repeat sequence. Tumour Biol. 1998;19 (Suppl 1):35–45. doi: 10.1159/000056503. [DOI] [PubMed] [Google Scholar]
  52. Shiota M., Nakamura S., Ichinohasama R., Abe M., Akagi T., Takeshita M., Mori N., Fujimoto J., Miyauchi J., Mikata A. Anaplastic large cell lymphomas expressing the novel chimeric protein p80NPM/ALK: a distinct clinicopathologic entity. Blood. 1995 Sep 1;86(5):1954–1960. [PubMed] [Google Scholar]
  53. Siddiqui J., Abe M., Hayes D., Shani E., Yunis E., Kufe D. Isolation and sequencing of a cDNA coding for the human DF3 breast carcinoma-associated antigen. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2320–2323. doi: 10.1073/pnas.85.7.2320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sloane J. P., Ormerod M. G. Distribution of epithelial membrane antigen in normal and neoplastic tissues and it value in diagnostic tumor pathology. Cancer. 1981 Apr 1;47(7):1786–1795. doi: 10.1002/1097-0142(19810401)47:7<1786::aid-cncr2820470711>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  55. Takahashi T., Makiguchi Y., Hinoda Y., Kakiuchi H., Nakagawa N., Imai K., Yachi A. Expression of MUC1 on myeloma cells and induction of HLA-unrestricted CTL against MUC1 from a multiple myeloma patient. J Immunol. 1994 Sep 1;153(5):2102–2109. [PubMed] [Google Scholar]
  56. Taylor-Papadimitriou J., Peterson J. A., Arklie J., Burchell J., Ceriani R. L., Bodmer W. F. Monoclonal antibodies to epithelium-specific components of the human milk fat globule membrane: production and reaction with cells in culture. Int J Cancer. 1981 Jul 15;28(1):17–21. doi: 10.1002/ijc.2910280104. [DOI] [PubMed] [Google Scholar]
  57. Treon S. P., Mollick J. A., Urashima M., Teoh G., Chauhan D., Ogata A., Raje N., Hilgers J. H., Nadler L., Belch A. R. Muc-1 core protein is expressed on multiple myeloma cells and is induced by dexamethasone. Blood. 1999 Feb 15;93(4):1287–1298. [PubMed] [Google Scholar]
  58. Wesseling J., van der Valk S. W., Hilkens J. A mechanism for inhibition of E-cadherin-mediated cell-cell adhesion by the membrane-associated mucin episialin/MUC1. Mol Biol Cell. 1996 Apr;7(4):565–577. doi: 10.1091/mbc.7.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wood G. S., Hardman D. L., Boni R., Dummer R., Kim Y. H., Smoller B. R., Takeshita M., Kikuchi M., Burg G. Lack of the t(2;5) or other mutations resulting in expression of anaplastic lymphoma kinase catalytic domain in CD30+ primary cutaneous lymphoproliferative disorders and Hodgkin's disease. Blood. 1996 Sep 1;88(5):1765–1770. [PubMed] [Google Scholar]
  60. Xing P. X., Reynolds K., Pietersz G. A., McKenzie I. F. Effect of variations in peptide sequence on anti-human milk fat globule membrane antibody reactions. Immunology. 1991 Feb;72(2):304–311. [PMC free article] [PubMed] [Google Scholar]
  61. de Bruin P. C., Beljaards R. C., van Heerde P., Van Der Valk P., Noorduyn L. A., Van Krieken J. H., Kluin-Nelemans J. C., Willemze R., Meijer C. J. Differences in clinical behaviour and immunophenotype between primary cutaneous and primary nodal anaplastic large cell lymphoma of T-cell or null cell phenotype. Histopathology. 1993 Aug;23(2):127–135. doi: 10.1111/j.1365-2559.1993.tb00470.x. [DOI] [PubMed] [Google Scholar]
  62. ten Berge R. L., Dukers D. F., Oudejans J. J., Pulford K., Ossenkoppele G. J., de Jong D., Miseré J. F., Meijer C. J. Adverse effects of activated cytotoxic T lymphocytes on the clinical outcome of nodal anaplastic large cell lymphoma. Blood. 1999 Apr 15;93(8):2688–2696. [PubMed] [Google Scholar]
  63. ten Berge R. L., Oudejans J. J., Ossenkoppele G. J., Pulford K., Willemze R., Falini B., Chott A., Meijer C. J. ALK expression in extranodal anaplastic large cell lymphoma favours systemic disease with (primary) nodal involvement and a good prognosis and occurs before dissemination. J Clin Pathol. 2000 Jun;53(6):445–450. doi: 10.1136/jcp.53.6.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. von Mensdorff-Pouilly S., Verstraeten A. A., Kenemans P., Snijdewint F. G., Kok A., Van Kamp G. J., Paul M. A., Van Diest P. J., Meijer S., Hilgers J. Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin. J Clin Oncol. 2000 Feb;18(3):574–583. doi: 10.1200/JCO.2000.18.3.574. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES