Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Apr;63(4):1195–1200. doi: 10.1128/iai.63.4.1195-1200.1995

Adjuvanticity and protective immunity elicited by Bordetella pertussis antigens encapsulated in poly(DL-lactide-co-glycolide) microspheres.

R Shahin 1, M Leef 1, J Eldridge 1, M Hudson 1, R Gilley 1
PMCID: PMC173134  PMID: 7890372

Abstract

Purified Bordetella pertussis antigens, encapsulated in biodegradable poly(DL-lactide-co-glycolide) (DL-PLG) microspheres, were evaluated for their immunogenicity and ability to elicit a protective immune response against B. pertussis respiratory infection. Microencapsulated pertussis toxoid, filamentous hemagglutinin, and pertactin all retained their immunogenicity when administered parenterally. Intranasal immunization with a low dose (1 micrograms) of encapsulated filamentous hemagglutinin, pertussis toxoid, or pertactin elicited strong specific immunoglobulin G and immunoglobulin A antibody responses in respiratory secretions that were greater in magnitude than the responses elicited by the same doses of unencapsulated antigen. Intranasal immunization with as little as 1 micrograms of encapsulated pertussis antigen prior to infection reduced the bacterial recovery by 3 log10 CFU. However, intranasal immunization with the same low doses of unencapsulated antigens did not reduce infection. Intranasal administration of a combination of 1 micrograms of each of the microencapsulated pertussis antigens was more effective in reducing bacterial infection than administration of any single microencapsulated antigen. Intranasal administration of microencapsulated B. pertussis antigens elicits high levels of specific antibody coinciding with protection against infection when these microspheres are administered to the respiratory tract. These data provide evidence of the respiratory adjuvanticity of three different DL-PLC microsphere preparations, each of which contains a unique B. pertussis antigen.

Full Text

The Full Text of this article is available as a PDF (212.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham E. Intranasal immunization with bacterial polysaccharide containing liposomes enhances antigen-specific pulmonary secretory antibody response. Vaccine. 1992;10(7):461–468. doi: 10.1016/0264-410x(92)90395-z. [DOI] [PubMed] [Google Scholar]
  2. Challacombe S. J., Rahman D., Jeffery H., Davis S. S., O'Hagan D. T. Enhanced secretory IgA and systemic IgG antibody responses after oral immunization with biodegradable microparticles containing antigen. Immunology. 1992 May;76(1):164–168. [PMC free article] [PubMed] [Google Scholar]
  3. Edelman R., Russell R. G., Losonsky G., Tall B. D., Tacket C. O., Levine M. M., Lewis D. H. Immunization of rabbits with enterotoxigenic E. coli colonization factor antigen (CFA/I) encapsulated in biodegradable microspheres of poly (lactide-co-glycolide). Vaccine. 1993;11(2):155–158. doi: 10.1016/0264-410x(93)90012-m. [DOI] [PubMed] [Google Scholar]
  4. Eldridge J. H., Gilley R. M., Staas J. K., Moldoveanu Z., Meulbroek J. A., Tice T. R. Biodegradable microspheres: vaccine delivery system for oral immunization. Curr Top Microbiol Immunol. 1989;146:59–66. doi: 10.1007/978-3-642-74529-4_6. [DOI] [PubMed] [Google Scholar]
  5. Eldridge J. H., Staas J. K., Meulbroek J. A., McGhee J. R., Tice T. R., Gilley R. M. Biodegradable microspheres as a vaccine delivery system. Mol Immunol. 1991 Mar;28(3):287–294. doi: 10.1016/0161-5890(91)90076-v. [DOI] [PubMed] [Google Scholar]
  6. Eldridge J. H., Staas J. K., Meulbroek J. A., Tice T. R., Gilley R. M. Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect Immun. 1991 Sep;59(9):2978–2986. doi: 10.1128/iai.59.9.2978-2986.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elson C. O., Ealding W., Lefkowitz J. A lavage technique allowing repeated measurement of IgA antibody in mouse intestinal secretions. J Immunol Methods. 1984 Feb 24;67(1):101–108. doi: 10.1016/0022-1759(84)90089-9. [DOI] [PubMed] [Google Scholar]
  8. Harmsen A. G., Muggenburg B. A., Snipes M. B., Bice D. E. The role of macrophages in particle translocation from lungs to lymph nodes. Science. 1985 Dec 13;230(4731):1277–1280. doi: 10.1126/science.4071052. [DOI] [PubMed] [Google Scholar]
  9. Katada T., Tamura M., Ui M. The A protomer of islet-activating protein, pertussis toxin, as an active peptide catalyzing ADP-ribosylation of a membrane protein. Arch Biochem Biophys. 1983 Jul 1;224(1):290–298. doi: 10.1016/0003-9861(83)90212-6. [DOI] [PubMed] [Google Scholar]
  10. Kimura A., Mountzouros K. T., Relman D. A., Falkow S., Cowell J. L. Bordetella pertussis filamentous hemagglutinin: evaluation as a protective antigen and colonization factor in a mouse respiratory infection model. Infect Immun. 1990 Jan;58(1):7–16. doi: 10.1128/iai.58.1.7-16.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LAMBERT H. J. EPIDEMIOLOGY OF A SMALL PERTUSSIS OUTBREAK IN KENT COUNTY, MICHIGAN. Public Health Rep. 1965 Apr;80:365–369. [PMC free article] [PubMed] [Google Scholar]
  12. Lehnert B. E. Pulmonary and thoracic macrophage subpopulations and clearance of particles from the lung. Environ Health Perspect. 1992 Jul;97:17–46. doi: 10.1289/ehp.929717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leininger E., Roberts M., Kenimer J. G., Charles I. G., Fairweather N., Novotny P., Brennan M. J. Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):345–349. doi: 10.1073/pnas.88.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Long S. S., Welkon C. J., Clark J. L. Widespread silent transmission of pertussis in families: antibody correlates of infection and symptomatology. J Infect Dis. 1990 Mar;161(3):480–486. doi: 10.1093/infdis/161.3.480. [DOI] [PubMed] [Google Scholar]
  15. Marx P. A., Compans R. W., Gettie A., Staas J. K., Gilley R. M., Mulligan M. J., Yamshchikov G. V., Chen D., Eldridge J. H. Protection against vaginal SIV transmission with microencapsulated vaccine. Science. 1993 May 28;260(5112):1323–1327. doi: 10.1126/science.8493576. [DOI] [PubMed] [Google Scholar]
  16. Menozzi F. D., Mutombo R., Renauld G., Gantiez C., Hannah J. H., Leininger E., Brennan M. J., Locht C. Heparin-inhibitable lectin activity of the filamentous hemagglutinin adhesin of Bordetella pertussis. Infect Immun. 1994 Mar;62(3):769–778. doi: 10.1128/iai.62.3.769-778.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Novotny P., Chubb A. P., Cownley K., Charles I. G. Biologic and protective properties of the 69-kDa outer membrane protein of Bordetella pertussis: a novel formulation for an acellular pertussis vaccine. J Infect Dis. 1991 Jul;164(1):114–122. doi: 10.1093/infdis/164.1.114. [DOI] [PubMed] [Google Scholar]
  18. Orr N., Robin G., Cohen D., Arnon R., Lowell G. H. Immunogenicity and efficacy of oral or intranasal Shigella flexneri 2a and Shigella sonnei proteosome-lipopolysaccharide vaccines in animal models. Infect Immun. 1993 Jun;61(6):2390–2395. doi: 10.1128/iai.61.6.2390-2395.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pitt M. L., Anderson A. O. Direct transdiaphragmatic traffic of peritoneal macrophages to the lung. Adv Exp Med Biol. 1988;237:627–632. doi: 10.1007/978-1-4684-5535-9_95. [DOI] [PubMed] [Google Scholar]
  20. Reid R. H., Boedeker E. C., McQueen C. E., Davis D., Tseng L. Y., Kodak J., Sau K., Wilhelmsen C. L., Nellore R., Dalal P. Preclinical evaluation of microencapsulated CFA/II oral vaccine against enterotoxigenic E. coli. Vaccine. 1993;11(2):159–167. doi: 10.1016/0264-410x(93)90013-n. [DOI] [PubMed] [Google Scholar]
  21. Sato Y., Izumiya K., Sato H., Cowell J. L., Manclark C. R. Aerosol infection of mice with Bordetella pertussis. Infect Immun. 1980 Jul;29(1):261–266. doi: 10.1128/iai.29.1.261-266.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shahin R. D., Amsbaugh D. F., Leef M. F. Mucosal immunization with filamentous hemagglutinin protects against Bordetella pertussis respiratory infection. Infect Immun. 1992 Apr;60(4):1482–1488. doi: 10.1128/iai.60.4.1482-1488.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shahin R. D., Hamel J., Leef M. F., Brodeur B. R. Analysis of protective and nonprotective monoclonal antibodies specific for Bordetella pertussis lipooligosaccharide. Infect Immun. 1994 Feb;62(2):722–725. doi: 10.1128/iai.62.2.722-725.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stein P. E., Boodhoo A., Armstrong G. D., Cockle S. A., Klein M. H., Read R. J. The crystal structure of pertussis toxin. Structure. 1994 Jan 15;2(1):45–57. doi: 10.1016/s0969-2126(00)00007-1. [DOI] [PubMed] [Google Scholar]
  25. Storsaeter J., Hallander H., Farrington C. P., Olin P., Möllby R., Miller E. Secondary analyses of the efficacy of two acellular pertussis vaccines evaluated in a Swedish phase III trial. Vaccine. 1990 Oct;8(5):457–461. doi: 10.1016/0264-410x(90)90246-i. [DOI] [PubMed] [Google Scholar]
  26. Tamura M., Nogimori K., Murai S., Yajima M., Ito K., Katada T., Ui M., Ishii S. Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry. 1982 Oct 26;21(22):5516–5522. doi: 10.1021/bi00265a021. [DOI] [PubMed] [Google Scholar]
  27. Tamura M., Nogimori K., Yajima M., Ase K., Ui M. A role of the B-oligomer moiety of islet-activating protein, pertussis toxin, in development of the biological effects on intact cells. J Biol Chem. 1983 Jun 10;258(11):6756–6761. [PubMed] [Google Scholar]
  28. Tuomanen E., Weiss A. Characterization of two adhesins of Bordetella pertussis for human ciliated respiratory-epithelial cells. J Infect Dis. 1985 Jul;152(1):118–125. doi: 10.1093/infdis/152.1.118. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES