Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Apr;63(4):1235–1240. doi: 10.1128/iai.63.4.1235-1240.1995

Lymphocyte populations during tuberculosis infection: V beta repertoires.

F Gambón-Deza 1, M Pacheco Carracedo 1, T Cerdá Mota 1, J Montes Santiago 1
PMCID: PMC173140  PMID: 7890378

Abstract

The immune response to Mycobacterium tuberculosis is mediated by T lymphocytes. We studied the changes in lymphocyte populations occurring in peripheral blood, pleural fluid, and ascites during tuberculosis infection. For this purpose, we compared recent-onset patients (newly converted to positive Mantoux reactions) with previously diagnosed patients (individuals with organic lesions). Recent infection was associated with peripheral blood lymphocytosis involving T lymphocytes expressing either T-cell receptor alpha/beta or gamma/delta. Lymphocytosis involved both CD4 and CD8 cells. On the other hand, we detected no changes in the distribution of peripheral blood lymphocyte populations in previously diagnosed patients. No changes were found in the numbers of B lymphocytes or natural killer cells in either recently infected or previously diagnosed patients. The pleural effusion and ascitic fluid samples contained T lymphocytes expressing T-cell receptor alpha/beta, the majority of which were CD4+. These lymphocytes showed an inverted CD45RA-to-CD45RO ratio, and we found high-level expression of the interleukin-2 receptor (CD25) in some patients. The results are compatible with the existence of periods of cell activation in the pleural fluid (which are disclosed by the appearance of the CD25 antigen and the transition of CD45RA expression to CD45RO) together with nonactivation periods (loss of CD25 and persistence of CD45RO expression). We studied a fraction of the V beta repertoire in peripheral blood in both groups and the same fraction of the V beta repertoire in pleural fluid from patients with tuberculous pleuritis, demonstrating that, in recently infected subjects, lymphocytosis was produced by the increase in lymphocytes which expressed some specific V beta subfamilies that differed from one individual to another. In two of five patients studied, we found significant changes in the V beta repertoire between lymphocytes from peripheral blood and the pleural fluid samples.

Full Text

The Full Text of this article is available as a PDF (262.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bigler R. D., Fisher D. E., Wang C. Y., Rinnooy Kan E. A., Kunkel H. G. Idiotype-like molecules on cells of a human T cell leukemia. J Exp Med. 1983 Sep 1;158(3):1000–1005. doi: 10.1084/jem.158.3.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boylston A. W., Borst J., Yssel H., Blanchard D., Spits H., de Vries J. E. Properties of a panel of monoclonal antibodies which react with the human T cell antigen receptor on the leukemic line HPB-ALL and a subset of normal peripheral blood T lymphocytes. J Immunol. 1986 Jul 15;137(2):741–744. [PubMed] [Google Scholar]
  3. Brenner M. B., Strominger J. L., Krangel M. S. The gamma delta T cell receptor. Adv Immunol. 1988;43:133–192. [PubMed] [Google Scholar]
  4. Carding S. R., Allan W., Kyes S., Hayday A., Bottomly K., Doherty P. C. Late dominance of the inflammatory process in murine influenza by gamma/delta + T cells. J Exp Med. 1990 Oct 1;172(4):1225–1231. doi: 10.1084/jem.172.4.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holoshitz J., Koning F., Coligan J. E., De Bruyn J., Strober S. Isolation of CD4- CD8- mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature. 1989 May 18;339(6221):226–229. doi: 10.1038/339226a0. [DOI] [PubMed] [Google Scholar]
  6. Inoue T., Yoshikai Y., Matsuzaki G., Nomoto K. Early appearing gamma/delta-bearing T cells during infection with Calmétte Guérin bacillus. J Immunol. 1991 Apr 15;146(8):2754–2762. [PubMed] [Google Scholar]
  7. Janis E. M., Kaufmann S. H., Schwartz R. H., Pardoll D. M. Activation of gamma delta T cells in the primary immune response to Mycobacterium tuberculosis. Science. 1989 May 12;244(4905):713–716. doi: 10.1126/science.2524098. [DOI] [PubMed] [Google Scholar]
  8. Kabelitz D., Bender A., Schondelmaier S., Schoel B., Kaufmann S. H. A large fraction of human peripheral blood gamma/delta + T cells is activated by Mycobacterium tuberculosis but not by its 65-kD heat shock protein. J Exp Med. 1990 Mar 1;171(3):667–679. doi: 10.1084/jem.171.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaufmann S. H. Heat-shock proteins and pathogenesis of bacterial infections. Springer Semin Immunopathol. 1991;13(1):25–36. doi: 10.1007/BF01225276. [DOI] [PubMed] [Google Scholar]
  10. Minoprio P., Bandeira A., Pereira P., Mota Santos T., Coutinho A. Preferential expansion of Ly-1 B and CD4- CD8- T cells in the polyclonal lymphocyte responses to murine T. cruzi infection. Int Immunol. 1989;1(2):176–184. doi: 10.1093/intimm/1.2.176. [DOI] [PubMed] [Google Scholar]
  11. Monaco J. J. A molecular model of MHC class-I-restricted antigen processing. Immunol Today. 1992 May;13(5):173–179. doi: 10.1016/0167-5699(92)90122-N. [DOI] [PubMed] [Google Scholar]
  12. Munk M. E., Schoel B., Modrow S., Karr R. W., Young R. A., Kaufmann S. H. T lymphocytes from healthy individuals with specificity to self-epitopes shared by the mycobacterial and human 65-kilodalton heat shock protein. J Immunol. 1989 Nov 1;143(9):2844–2849. [PubMed] [Google Scholar]
  13. Neefjes J. J., Ploegh H. L. Intracellular transport of MHC class II molecules. Immunol Today. 1992 May;13(5):179–184. doi: 10.1016/0167-5699(92)90123-O. [DOI] [PubMed] [Google Scholar]
  14. O'Brien R. L., Happ M. P., Dallas A., Palmer E., Kubo R., Born W. K. Stimulation of a major subset of lymphocytes expressing T cell receptor gamma delta by an antigen derived from Mycobacterium tuberculosis. Cell. 1989 May 19;57(4):667–674. doi: 10.1016/0092-8674(89)90135-9. [DOI] [PubMed] [Google Scholar]
  15. Ohga S., Yoshikai Y., Takeda Y., Hiromatsu K., Nomoto K. Sequential appearance of gamma/delta- and alpha/beta-bearing T cells in the peritoneal cavity during an i.p. infection with Listeria monocytogenes. Eur J Immunol. 1990 Mar;20(3):533–538. doi: 10.1002/eji.1830200311. [DOI] [PubMed] [Google Scholar]
  16. Ohmen J. D., Barnes P. F., Uyemura K., Lu S. Z., Grisso C. L., Modlin R. L. The T cell receptors of human gamma delta T cells reactive to Mycobacterium tuberculosis are encoded by specific V genes but diverse V-J junctions. J Immunol. 1991 Nov 15;147(10):3353–3359. [PubMed] [Google Scholar]
  17. Orme I. M. Characteristics and specificity of acquired immunologic memory to Mycobacterium tuberculosis infection. J Immunol. 1988 May 15;140(10):3589–3593. [PubMed] [Google Scholar]
  18. Orme I. M., Collins F. M. Adoptive protection of the Mycobacterium tuberculosis-infected lung. Dissociation between cells that passively transfer protective immunity and those that transfer delayed-type hypersensitivity to tuberculin. Cell Immunol. 1984 Mar;84(1):113–120. doi: 10.1016/0008-8749(84)90082-0. [DOI] [PubMed] [Google Scholar]
  19. Orme I. M. The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with Mycobacterium tuberculosis. J Immunol. 1987 Jan 1;138(1):293–298. [PubMed] [Google Scholar]
  20. Posnett D. N., Wang C. Y., Friedman S. M. Inherited polymorphism of the human T-cell antigen receptor detected by a monoclonal antibody. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7888–7892. doi: 10.1073/pnas.83.20.7888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schlesinger L. S., Bellinger-Kawahara C. G., Payne N. R., Horwitz M. A. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol. 1990 Apr 1;144(7):2771–2780. [PubMed] [Google Scholar]
  22. Schlesinger L. S. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol. 1993 Apr 1;150(7):2920–2930. [PubMed] [Google Scholar]
  23. Skeen M. J., Ziegler H. K. Induction of murine peritoneal gamma/delta T cells and their role in resistance to bacterial infection. J Exp Med. 1993 Sep 1;178(3):971–984. doi: 10.1084/jem.178.3.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Styblo K. Overview and epidemiologic assessment of the current global tuberculosis situation with an emphasis on control in developing countries. Rev Infect Dis. 1989 Mar-Apr;11 (Suppl 2):S339–S346. doi: 10.1093/clinids/11.supplement_2.s339. [DOI] [PubMed] [Google Scholar]
  25. Tazi A., Bouchonnet F., Valeyre D., Cadranel J., Battesti J. P., Hance A. J. Characterization of gamma/delta T-lymphocytes in the peripheral blood of patients with active tuberculosis. A comparison with normal subjects and patients with sarcoidosis. Am Rev Respir Dis. 1992 Nov;146(5 Pt 1):1216–1221. doi: 10.1164/ajrccm/146.5_Pt_1.1216. [DOI] [PubMed] [Google Scholar]
  26. Uyemura K., Klotz J., Pirmez C., Ohmen J., Wang X. H., Ho C., Hoffman W. L., Modlin R. L. Microanatomic clonality of gamma delta T cells in human leishmaniasis lesions. J Immunol. 1992 Feb 15;148(4):1205–1211. [PubMed] [Google Scholar]
  27. Wilson R. K., Lai E., Concannon P., Barth R. K., Hood L. E. Structure, organization and polymorphism of murine and human T-cell receptor alpha and beta chain gene families. Immunol Rev. 1988 Jan;101:149–172. doi: 10.1111/j.1600-065x.1988.tb00736.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES