Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 2001 Jun;54(6):470–473. doi: 10.1136/jcp.54.6.470

Dimethylarginines in chronic renal failure

N Wahbi 1, R Dalton 1, C Turner 1, M Denton 1, I Abbs 1, R Swaminathan 1
PMCID: PMC1731454  PMID: 11376022

Abstract

Background—Nitric oxide (NO) is a potent chemical mediator involved in many functions. In vivo production of NO is thought to be regulated by endogenous analogues of L-arginine: asymmetric dimethylarginine (ADMA).

Aim—To examine the effect of renal function and dialysis on the serum concentrations of ADMA and symmetric dimethylarginine (SDMA).

Methods—Blood samples were obtained from nine healthy subjects, patients with renal failure before (n = 17) and after haemodialysis (n = 9), nine patients on chronic ambulatory peritoneal dialysis (CAPD), and 13 patients with chronic renal failure on conservative treatment. Serum samples were extracted using a solid phase cation exchange column and the extracts were analysed by high performance liquid chromatography (HPLC).

Results—Serum concentrations of ADMA in patients with renal failure (mean, 1.04 µmol/litre; SD, 0.17) were significantly higher than those of controls (mean, 0.61 µmol/litre; SD, 0.13). Haemodialysis significantly decreased the serum concentration by 36% (before dialysis: mean 0.99 (SD, 0.25) µmol/litre; after dialysis: mean, 0.63 (SD, 0.15) µmol/litre). Serum SDMA concentrations were higher in patients with renal failure, and haemodialysis decreased the concentration by 60%. There was no difference in serum arginine concentrations between the groups.

Conclusion—Serum concentrations of ADMA are increased in renal failure and haemodialysis reduces the concentration.

Key Words: chronic renal failure • dialysis • nitric oxide • arginine • dimethylarginines

Full Text

The Full Text of this article is available as a PDF (113.8 KB).

graphic file with name 0031.f1.jpg

Figure 1 Ion pair chromatograms of ADMA and SDMA in (A) aqueous standard (2.5 µmol/litre of ADMA/SDMA, 20 µmol/litre of homoarginine), (B) serum from a control subject, and (C) pre-dialysis serum. ARG, arginine; HARG, homoarginine; ADMA, asymmetric dimethylarginine; SDMA, symmetric dimethylarginine.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al Banchaabouchi M., Marescau B., Possemiers I., D'Hooge R., Levillain O., De Deyn P. P. NG, NG-dimethylarginine and NG, NG-dimethylarginine in renal insufficiency. Pflugers Arch. 2000 Mar;439(5):524–531. doi: 10.1007/s004249900220. [DOI] [PubMed] [Google Scholar]
  2. Anderstam B., Katzarski K., Bergström J. Serum levels of NG, NG-dimethyl-L-arginine, a potential endogenous nitric oxide inhibitor in dialysis patients. J Am Soc Nephrol. 1997 Sep;8(9):1437–1442. doi: 10.1681/ASN.V891437. [DOI] [PubMed] [Google Scholar]
  3. Aneman A., Backman V., Snygg J., von Bothmer C., Fändriks L., Pettersson A. Accumulation of an endogenous inhibitor of nitric oxide synthase during graded hemorrhagic shock. Circ Shock. 1994 Nov;44(3):111–114. [PubMed] [Google Scholar]
  4. Arese M., Strasly M., Ruva C., Costamagna C., Ghigo D., MacAllister R., Verzetti G., Tetta C., Bosia A., Bussolino F. Regulation of nitric oxide synthesis in uraemia. Nephrol Dial Transplant. 1995;10(8):1386–1397. [PubMed] [Google Scholar]
  5. Böger R. H., Bode-Böger S. M., Szuba A., Tsao P. S., Chan J. R., Tangphao O., Blaschke T. F., Cooke J. P. Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation. 1998 Nov 3;98(18):1842–1847. doi: 10.1161/01.cir.98.18.1842. [DOI] [PubMed] [Google Scholar]
  6. Chen P. Y., Sanders P. W. L-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest. 1991 Nov;88(5):1559–1567. doi: 10.1172/JCI115467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Faraci F. M., Brian J. E., Jr, Heistad D. D. Response of cerebral blood vessels to an endogenous inhibitor of nitric oxide synthase. Am J Physiol. 1995 Nov;269(5 Pt 2):H1522–H1527. doi: 10.1152/ajpheart.1995.269.5.H1522. [DOI] [PubMed] [Google Scholar]
  8. Fickling S. A., Williams D., Vallance P., Nussey S. S., Whitley G. S. Plasma concentrations of endogenous inhibitor of nitric oxide synthesis in normal pregnancy and pre-eclampsia. Lancet. 1993 Jul 24;342(8865):242–243. doi: 10.1016/0140-6736(93)92335-q. [DOI] [PubMed] [Google Scholar]
  9. Goonasekera C. D., Rees D. D., Woolard P., Frend A., Shah V., Dillon M. J. Nitric oxide synthase inhibitors and hypertension in children and adolescents. J Hypertens. 1997 Aug;15(8):901–909. doi: 10.1097/00004872-199715080-00015. [DOI] [PubMed] [Google Scholar]
  10. Hotchkiss R. S., Karl I. E., Parker J. L., Adams H. R. Inhibition of NO synthesis in septic shock. Lancet. 1992 Feb 15;339(8790):434–435. doi: 10.1016/0140-6736(92)90127-o. [DOI] [PubMed] [Google Scholar]
  11. Kimoto M., Whitley G. S., Tsuji H., Ogawa T. Detection of NG,NG-dimethylarginine dimethylaminohydrolase in human tissues using a monoclonal antibody. J Biochem. 1995 Feb;117(2):237–238. doi: 10.1093/jb/117.2.237. [DOI] [PubMed] [Google Scholar]
  12. López-Jaramillo P., Narváez M., Calle A., Rivera J., Jácome P., Ruano C., Nava E. Cyclic guanosine 3',5' monophosphate concentrations in pre-eclampsia: effects of hydralazine. Br J Obstet Gynaecol. 1996 Jan;103(1):33–38. doi: 10.1111/j.1471-0528.1996.tb09512.x. [DOI] [PubMed] [Google Scholar]
  13. MacAllister R. J., Fickling S. A., Whitley G. S., Vallance P. Metabolism of methylarginines by human vasculature; implications for the regulation of nitric oxide synthesis. Br J Pharmacol. 1994 May;112(1):43–48. doi: 10.1111/j.1476-5381.1994.tb13026.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MacAllister R. J., Rambausek M. H., Vallance P., Williams D., Hoffmann K. H., Ritz E. Concentration of dimethyl-L-arginine in the plasma of patients with end-stage renal failure. Nephrol Dial Transplant. 1996 Dec;11(12):2449–2452. doi: 10.1093/oxfordjournals.ndt.a027213. [DOI] [PubMed] [Google Scholar]
  15. MacAllister R. J., Whitley G. S., Vallance P. Effects of guanidino and uremic compounds on nitric oxide pathways. Kidney Int. 1994 Mar;45(3):737–742. doi: 10.1038/ki.1994.98. [DOI] [PubMed] [Google Scholar]
  16. Matsuoka H., Itoh S., Kimoto M., Kohno K., Tamai O., Wada Y., Yasukawa H., Iwami G., Okuda S., Imaizumi T. Asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in experimental hypertension. Hypertension. 1997 Jan;29(1 Pt 2):242–247. doi: 10.1161/01.hyp.29.1.242. [DOI] [PubMed] [Google Scholar]
  17. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  18. Rawal N., Lee Y. J., Whitaker J. N., Park J. O., Paik W. K., Kim S. Urinary excretion of NG-dimethylarginines in multiple sclerosis patients: preliminary observations. J Neurol Sci. 1995 Apr;129(2):186–191. doi: 10.1016/0022-510x(94)00277-u. [DOI] [PubMed] [Google Scholar]
  19. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vallance P., Leone A., Calver A., Collier J., Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992 Mar 7;339(8793):572–575. doi: 10.1016/0140-6736(92)90865-z. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES