Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Apr;63(4):1286–1290. doi: 10.1128/iai.63.4.1286-1290.1995

Phospholipid composition of Pneumocystis carinii carinii and effects of methylprednisolone immunosuppression on rat lung lipids.

Z Guo 1, E S Kaneshiro 1
PMCID: PMC173148  PMID: 7890386

Abstract

The phospholipid class composition of Pneumocystis carinii carinii freshly isolated from infected lungs generally resembled that of the host lung, suggesting that the parasite scavenges lung alveolar lipids. However, subtle quantitative differences were demonstrated, indicating that the pathogen has the metabolic capacity to de novo synthesize, or at least tailor, its lipids. The concentration of phosphatidylcholine, the major lung surfactant lipid, in the organism was lower than that in lungs of normal and immunosuppressed uninfected rats, and the concentration of phosphatidylinositol was higher. Phosphonolipids were not detected in the organism by chemical analysis and nuclear magnetic resonance spectrometry. The immunosuppressive regimen alone caused increases in both surfactant protein A and the lipid content of the whole lung. The lungs of rats that were subjected to corticosteroid immunosuppression and had heavy parasite loads had dramatically elevated surfactant protein A levels, whereas the lipid contents of these lungs were not different from lipid contents in whole lungs of immunosuppressed uninfected rats. P. carinii was found to concentrate lipids, indicating that a large amount of the lipids in the whole infected rat lung was within the parasites residing in the organ. These observations have important implications relevant to the use of corticosteroid therapy for P. carinii pneumonitis.

Full Text

The Full Text of this article is available as a PDF (179.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Baxter C. F., Rouser G., Simon G. Variations among vertebrates of lung phospholipid case composition. Lipids. 1969 May;4(3):243–244. doi: 10.1007/BF02532640. [DOI] [PubMed] [Google Scholar]
  3. Boylan C. J., Current W. L. Improved rat model of Pneumocystis carinii pneumonia: induced laboratory infections in Pneumocystis-free animals. Infect Immun. 1992 Apr;60(4):1589–1597. doi: 10.1128/iai.60.4.1589-1597.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  5. Ferguson K. A., Davis F. M., Conner R. L., Landrey J. R., Mallory F. B. Effect of sterol replacement in vivo on the fatty acid composition of Tetrahymena. J Biol Chem. 1975 Sep 10;250(17):6998–7005. [PubMed] [Google Scholar]
  6. Florin-Christensen M., Florin-Christensen J., Wu Y. P., Zhou L., Gupta A., Rudney H., Kaneshiro E. S. Occurrence of specific sterols in Pneumocystis carinii. Biochem Biophys Res Commun. 1994 Jan 14;198(1):236–242. doi: 10.1006/bbrc.1994.1033. [DOI] [PubMed] [Google Scholar]
  7. Harwood J. L. Lung surfactant. Prog Lipid Res. 1987;26(3):211–256. doi: 10.1016/0163-7827(87)90004-x. [DOI] [PubMed] [Google Scholar]
  8. Kaneshiro E. S., Ellis J. E., Jayasimhulu K., Beach D. H. Evidence for the presence of "metabolic sterols" in Pneumocystis: identification and initial characterization of Pneumocystis carinii sterols. J Eukaryot Microbiol. 1994 Jan-Feb;41(1):78–85. doi: 10.1111/j.1550-7408.1994.tb05938.x. [DOI] [PubMed] [Google Scholar]
  9. Kaneshiro E. S., Ellis J. E., Zhou L. H., Rudney H., Gupta A., Jayasimhulu K., Setchell K. D., Beach D. H. Isoprenoid metabolism in Pneumocystis carinii. J Eukaryot Microbiol. 1994 Sep-Oct;41(5):93S–93S. [PubMed] [Google Scholar]
  10. Kaneshiro E. S., Matesic D. F., Jayasimhulu K. Characterizations of six ethanolamine sphingophospholipids from Paramecium cells and cilia. J Lipid Res. 1984 Apr;25(4):369–377. [PubMed] [Google Scholar]
  11. Kaneshiro E. S., Wyder M. A., Zhou L. H., Ellis J. E., Voelker D. R., Langreth S. G. Characterization of Pneumocystis carinii preparations developed for lipid analysis. J Eukaryot Microbiol. 1993 Nov-Dec;40(6):805–815. doi: 10.1111/j.1550-7408.1993.tb04479.x. [DOI] [PubMed] [Google Scholar]
  12. Kawada H., Horiuchi T., Shannon J. M., Kuroki Y., Voelker D. R., Mason R. J. Alveolar type II cells, surfactant protein A (SP-A), and the phospholipid components of surfactant in acute silicosis in the rat. Am Rev Respir Dis. 1989 Aug;140(2):460–470. doi: 10.1164/ajrccm/140.2.460. [DOI] [PubMed] [Google Scholar]
  13. Kernbaum S., Masliah J., Alcindor L. G., Bouton C., Christol D. Phospholipase activities of bronchoalveolar lavage fluid in rat Pneumocystis carinii pneumonia. Br J Exp Pathol. 1983 Feb;64(1):75–80. [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Limper A. H., O'Riordan D. M., Vuk-Pavlovic Z., Crouch E. C. Accumulation of surfactant protein D in the lung during Pneumocystis carinii pneumonia. J Eukaryot Microbiol. 1994 Sep-Oct;41(5):98S–98S. [PubMed] [Google Scholar]
  16. Pesanti E. L. Phospholipid profile of Pneumocystis carinii and its interaction with alveolar type II epithelial cells. Infect Immun. 1987 Mar;55(3):736–741. doi: 10.1128/iai.55.3.736-741.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rhoads D. E., Kaneshiro E. S. Characterizations of phospholipids from Paramecium tetraurelia cells and cilia. J Protozool. 1979 May;26(2):329–338. doi: 10.1111/j.1550-7408.1979.tb02790.x. [DOI] [PubMed] [Google Scholar]
  18. Rice W. R., Singleton F. M., Linke M. J., Walzer P. D. Regulation of surfactant phosphatidylcholine secretion from alveolar type II cells during Pneumocystis carinii pneumonia in the rat. J Clin Invest. 1993 Dec;92(6):2778–2782. doi: 10.1172/JCI116896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sheehan P. M., Stokes D. C., Yeh Y. Y., Hughes W. T. Surfactant phospholipids and lavage phospholipase A2 in experimental Pneumocystis carinii pneumonia. Am Rev Respir Dis. 1986 Sep;134(3):526–531. doi: 10.1164/arrd.1986.134.3.526. [DOI] [PubMed] [Google Scholar]
  20. Sleight R. G., Mehta M. A., Kaneshiro E. S. Uptake and metabolism of fluorescent lipid analogs by Pneumocystis carinii. J Eukaryot Microbiol. 1994 Sep-Oct;41(5):111S–111S. [PubMed] [Google Scholar]
  21. Sun I. L., Sun E. E., Crane F. L., Morré D. J., Lindgren A., Löw H. Requirement for coenzyme Q in plasma membrane electron transport. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11126–11130. doi: 10.1073/pnas.89.23.11126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yoshida Y. Ultrastructural studies of Pneumocystis carinii. J Protozool. 1989 Jan-Feb;36(1):53–60. doi: 10.1111/j.1550-7408.1989.tb02696.x. [DOI] [PubMed] [Google Scholar]
  23. Zimmerman P. E., Voelker D. R., McCormack F. X., Paulsrud J. R., Martin W. J., 2nd 120-kD surface glycoprotein of Pneumocystis carinii is a ligand for surfactant protein A. J Clin Invest. 1992 Jan;89(1):143–149. doi: 10.1172/JCI115554. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES