Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Apr;63(4):1356–1361. doi: 10.1128/iai.63.4.1356-1361.1995

Identification of an immunologically important hypervariable domain of major outer surface protein A of Borrelia burgdorferi.

B C McGrath 1, J J Dunn 1, G Gorgone 1, D Guttman 1, D Dykhuizen 1, B J Luft 1
PMCID: PMC173158  PMID: 7890394

Abstract

The gene for the major outer surface protein A (OspA) from several clinically obtained strains of Borrelia burgdorferi, the cause of Lyme disease, has been cloned, sequenced, and expressed in Escherichia coli by using a T7-based expression system (J. J. Dunn, B. N. Lade, and A. G. Barbour, Protein Expr. Purif. 1:159-168, 1990). All of the OspAs have a single conserved tryptophan at residue 216 or, in some cases, 217; however, the region of the protein flanking the tryptophan is hypervariable, as determined by a moving-window population analysis of ospA from 15 European and North American isolates of B. burgdorferi. Epitope-mapping studies using chemically cleaved OspA and a TrpE-OspA fusion have indicated that this hypervariable region is important for immune recognition. Biophysical analysis, including fluorescence and circular dichroism spectroscopy, have indicated that the conserved tryptophan is buried in a hydrophobic environment. Polar amino acid side chains flanking the tryptophan are likely to be exposed to the hydrophilic solvent. The hypervariability of these solvent-exposed amino acid residues may contribute to the antigenic variation in OspA. To test this, we have performed site-directed mutagenesis to replace some of the potentially exposed amino acid side chains in the B31 protein with the analogous residues of a Borrelia garinii strain, K48. The altered proteins were then analyzed by Western blot (immunoblot) with monoclonal antibodies which bind OspA on the surface of the intact B31 spirochete. Our results indicate that specific amino acid changes near the tryptophan can abolish the reactivity of OspA to these monoclonal antibodies, which is an important consideration in the design of vaccines based on recombinant OspA.

Full Text

The Full Text of this article is available as a PDF (234.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aydintug M. K., Gu Y., Philipp M. T. Borrelia burgdorferi antigens that are targeted by antibody-dependent, complement-mediated killing in the rhesus monkey. Infect Immun. 1994 Nov;62(11):4929–4937. doi: 10.1128/iai.62.11.4929-4937.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baranton G., Postic D., Saint Girons I., Boerlin P., Piffaretti J. C., Assous M., Grimont P. A. Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol. 1992 Jul;42(3):378–383. doi: 10.1099/00207713-42-3-378. [DOI] [PubMed] [Google Scholar]
  3. Barbour A. G., Tessier S. L., Todd W. J. Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect Immun. 1983 Aug;41(2):795–804. doi: 10.1128/iai.41.2.795-804.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belfaiza J., Postic D., Bellenger E., Baranton G., Girons I. S. Genomic fingerprinting of Borrelia burgdorferi sensu lato by pulsed-field gel electrophoresis. J Clin Microbiol. 1993 Nov;31(11):2873–2877. doi: 10.1128/jcm.31.11.2873-2877.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bockenstedt L. K., Fikrig E., Barthold S. W., Kantor F. S., Flavell R. A. Inability of truncated recombinant Osp A proteins to elicit protective immunity to Borrelia burgdorferi in mice. J Immunol. 1993 Jul 15;151(2):900–906. [PubMed] [Google Scholar]
  6. Craft J. E., Fischer D. K., Shimamoto G. T., Steere A. C. Antigens of Borrelia burgdorferi recognized during Lyme disease. Appearance of a new immunoglobulin M response and expansion of the immunoglobulin G response late in the illness. J Clin Invest. 1986 Oct;78(4):934–939. doi: 10.1172/JCI112683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dattwyler R. J., Luft B. J. Immunodiagnosis of Lyme borreliosis. Rheum Dis Clin North Am. 1989 Nov;15(4):727–734. [PubMed] [Google Scholar]
  8. Dunn J. J., Lade B. N., Barbour A. G. Outer surface protein A (OspA) from the Lyme disease spirochete, Borrelia burgdorferi: high level expression and purification of a soluble recombinant form of OspA. Protein Expr Purif. 1990 Nov;1(2):159–168. doi: 10.1016/1046-5928(90)90011-m. [DOI] [PubMed] [Google Scholar]
  9. Dykhuizen D. E., Polin D. S., Dunn J. J., Wilske B., Preac-Mursic V., Dattwyler R. J., Luft B. J. Borrelia burgdorferi is clonal: implications for taxonomy and vaccine development. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10163–10167. doi: 10.1073/pnas.90.21.10163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fikrig E., Barthold S. W., Kantor F. S., Flavell R. A. Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. Science. 1990 Oct 26;250(4980):553–556. doi: 10.1126/science.2237407. [DOI] [PubMed] [Google Scholar]
  11. Fikrig E., Telford S. R., 3rd, Barthold S. W., Kantor F. S., Spielman A., Flavell R. A. Elimination of Borrelia burgdorferi from vector ticks feeding on OspA-immunized mice. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5418–5421. doi: 10.1073/pnas.89.12.5418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. France L. L., Kieleczawa J., Dunn J. J., Hind G., Sutherland J. C. Structural analysis of an outer surface protein from the Lyme disease spirochete, Borrelia burgdorferi, using circular dichroism and fluorescence spectroscopy. Biochim Biophys Acta. 1992 Mar 27;1120(1):59–68. doi: 10.1016/0167-4838(92)90424-c. [DOI] [PubMed] [Google Scholar]
  13. France L. L., Kieleczawa J., Dunn J. J., Luft B. J., Hind G., Sutherland J. C. Evidence for an alpha-helical epitope on outer surface protein A from the Lyme disease spirochete, Borrelia burgdorferi: an application of steady-state and time-resolved fluorescence quenching techniques. Biochim Biophys Acta. 1993 Oct 6;1202(2):287–296. doi: 10.1016/0167-4838(93)90018-m. [DOI] [PubMed] [Google Scholar]
  14. Lischwe M. A., Sung M. T. Use of N-chlorosuccinimide/urea for the selective cleavage of tryptophanyl peptide bonds in proteins. Cytochrome c. J Biol Chem. 1977 Jul 25;252(14):4976–4980. [PubMed] [Google Scholar]
  15. Schubach W. H., Mudri S., Dattwyler R. J., Luft B. J. Mapping antibody-binding domains of the major outer surface membrane protein (OspA) of Borrelia burgdorferi. Infect Immun. 1991 Jun;59(6):1911–1915. doi: 10.1128/iai.59.6.1911-1915.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sears J. E., Fikrig E., Nakagawa T. Y., Deponte K., Marcantonio N., Kantor F. S., Flavell R. A. Molecular mapping of Osp-A mediated immunity against Borrelia burgdorferi, the agent of Lyme disease. J Immunol. 1991 Sep 15;147(6):1995–2000. [PubMed] [Google Scholar]
  17. Simon M. M., Schaible U. E., Kramer M. D., Eckerskorn C., Museteanu C., Müller-Hermelink H. K., Wallich R. Recombinant outer surface protein a from Borrelia burgdorferi induces antibodies protective against spirochetal infection in mice. J Infect Dis. 1991 Jul;164(1):123–132. doi: 10.1093/infdis/164.1.123. [DOI] [PubMed] [Google Scholar]
  18. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  19. Szczepanski A., Benach J. L. Lyme borreliosis: host responses to Borrelia burgdorferi. Microbiol Rev. 1991 Mar;55(1):21–34. doi: 10.1128/mr.55.1.21-34.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tajima F. Determination of window size for analyzing DNA sequences. J Mol Evol. 1991 Nov;33(5):470–473. doi: 10.1007/BF02103140. [DOI] [PubMed] [Google Scholar]
  21. Wilske B., Luft B., Schubach W. H., Zumstein G., Jauris S., Preac-Mursic V., Kramer M. D. Molecular analysis of the outer surface protein A (OspA) of Borrelia burgdorferi for conserved and variable antibody binding domains. Med Microbiol Immunol. 1992;181(4):191–207. doi: 10.1007/BF00215765. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES