Abstract
Genetic and biochemical studies have suggested a link between reduced catalase activity and resistance to isoniazid in Mycobacterium tuberculosis. In this study, we examined the molecular mechanisms of resistance to isoniazid with six in vitro mutants of the M. tuberculosis complex (Mycobacterium bovis and M. tuberculosis). Five of six mutants resistant to isoniazid were negative by catalase assays. Immunoblot analyses using a polyclonal antibody against the katG gene product (catalase-peroxidase) demonstrated that the enzyme is not produced in four of these isoniazid-resistant strains. A complete deletion of the katG gene was detected in only one of these isoniazid-resistant M. tuberculosis complex strains by Southern blot analyses. In two other resistant strains, partial deletions of the katG gene were identified. A point mutation which resulted in the insertion of a termination codon in the katG coding sequence caused a catalase-negative phenotype in a fourth strain. Of the two resistant strains which produce the enzyme, one was shown to be negative by a catalase assay. Single-stranded conformational polymorphism and DNA sequence analyses identified a mutation in the katG gene of this strain which may contribute to reduced enzymatic activity and subsequent isoniazid resistance. These data demonstrate that genetic alterations to the katG gene other than complete deletions are prevalent and may contribute significantly to the number of cases of isoniazid-resistant tuberculosis.
Full Text
The Full Text of this article is available as a PDF (248.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227–230. doi: 10.1126/science.8284673. [DOI] [PubMed] [Google Scholar]
- Bloom B. R., Murray C. J. Tuberculosis: commentary on a reemergent killer. Science. 1992 Aug 21;257(5073):1055–1064. doi: 10.1126/science.257.5073.1055. [DOI] [PubMed] [Google Scholar]
- Collins F. M. Tuberculosis: the return of an old enemy. Crit Rev Microbiol. 1993;19(1):1–16. doi: 10.3109/10408419309113520. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dooley S. W., Jarvis W. R., Martone W. J., Snider D. E., Jr Multidrug-resistant tuberculosis. Ann Intern Med. 1992 Aug 1;117(3):257–259. doi: 10.7326/0003-4819-117-3-257. [DOI] [PubMed] [Google Scholar]
- Farr S. B., Touati D., Kogoma T. Effects of oxygen stress on membrane functions in Escherichia coli: role of HPI catalase. J Bacteriol. 1988 Apr;170(4):1837–1842. doi: 10.1128/jb.170.4.1837-1842.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heimberger A., Eisenstark A. Compartmentalization of catalases in Escherichia coli. Biochem Biophys Res Commun. 1988 Jul 15;154(1):392–397. doi: 10.1016/0006-291x(88)90698-5. [DOI] [PubMed] [Google Scholar]
- Heym B., Zhang Y., Poulet S., Young D., Cole S. T. Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol. 1993 Jul;175(13):4255–4259. doi: 10.1128/jb.175.13.4255-4259.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MIDDLEBROOK G., COHN M. L., SCHAEFER W. B. Studies on isoniazid and tubercle bacilli. III. The isolation, drug-susceptibility, and catalase-testing of tubercle bacilli from isoniazid-treated patients. Am Rev Tuberc. 1954 Nov;70(5):852–872. doi: 10.1164/art.1954.70.5.852. [DOI] [PubMed] [Google Scholar]
- MIDDLEBROOK G. Isoniazid-resistance and catalase activity of tubercle bacilli; a preliminary report. Am Rev Tuberc. 1954 Mar;69(3):471–472. doi: 10.1164/art.1954.69.3.471. [DOI] [PubMed] [Google Scholar]
- Morris S. L., Nair J., Rouse D. A. The catalase-peroxidase of Mycobacterium intracellulare: nucleotide sequence analysis and expression in Escherichia coli. J Gen Microbiol. 1992 Nov;138(11):2363–2370. doi: 10.1099/00221287-138-11-2363. [DOI] [PubMed] [Google Scholar]
- Nair J., Rouse D. A., Bai G. H., Morris S. L. The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol Microbiol. 1993 Nov;10(3):521–527. doi: 10.1111/j.1365-2958.1993.tb00924.x. [DOI] [PubMed] [Google Scholar]
- Nair J., Rouse D. A., Morris S. L. Nucleotide sequence analysis and serologic characterization of the Mycobacterium intracellulare homologue of the Mycobacterium tuberculosis 19 kDa antigen. Mol Microbiol. 1992 Jun;6(11):1431–1439. doi: 10.1111/j.1365-2958.1992.tb00863.x. [DOI] [PubMed] [Google Scholar]
- Neville K., Bromberg A., Bromberg R., Bonk S., Hanna B. A., Rom W. N. The third epidemic--multidrug-resistant tuberculosis. Chest. 1994 Jan;105(1):45–48. doi: 10.1378/chest.105.1.45. [DOI] [PubMed] [Google Scholar]
- Orita M., Suzuki Y., Sekiya T., Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989 Nov;5(4):874–879. doi: 10.1016/0888-7543(89)90129-8. [DOI] [PubMed] [Google Scholar]
- Quémard A., Lacave C., Lanéelle G. Isoniazid inhibition of mycolic acid synthesis by cell extracts of sensitive and resistant strains of Mycobacterium aurum. Antimicrob Agents Chemother. 1991 Jun;35(6):1035–1039. doi: 10.1128/aac.35.6.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouse D. A., Morris S. L., Karpas A. B., Probst P. G., Chaparas S. D. Production, characterization, and species specificity of monoclonal antibodies to Mycobacterium avium complex protein antigens. Infect Immun. 1990 May;58(5):1445–1449. doi: 10.1128/iai.58.5.1445-1449.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
- WINDER F. Catalase and peroxidase in mycobacteria. Possible relationship to the mode of action of isoniazid. Am Rev Respir Dis. 1960 Jan;81:68–78. doi: 10.1164/arrd.1960.81.1P1.68. [DOI] [PubMed] [Google Scholar]
- Welinder K. G. Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily. Biochim Biophys Acta. 1991 Nov 15;1080(3):215–220. doi: 10.1016/0167-4838(91)90004-j. [DOI] [PubMed] [Google Scholar]
- YOUATT J. Pigments produced by Mycobacteria on exposure to isoniazid. 2. Aust J Exp Biol Med Sci. 1962 Jun;40:197–199. doi: 10.1038/icb.1962.22. [DOI] [PubMed] [Google Scholar]
- Youatt J. A review of the action of isoniazid. Am Rev Respir Dis. 1969 May;99(5):729–749. doi: 10.1164/arrd.1969.99.5.729. [DOI] [PubMed] [Google Scholar]
- Youatt J., Tham S. H. An enzyme system of Mycobacterium tuberculosis that reacts specifically with isoniazid. I. Am Rev Respir Dis. 1969 Jul;100(1):25–30. doi: 10.1164/arrd.1969.100.1.25. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Garbe T., Young D. Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol Microbiol. 1993 May;8(3):521–524. doi: 10.1111/j.1365-2958.1993.tb01596.x. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Heym B., Allen B., Young D., Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992 Aug 13;358(6387):591–593. doi: 10.1038/358591a0. [DOI] [PubMed] [Google Scholar]