Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Apr;63(4):1452–1461. doi: 10.1128/iai.63.4.1452-1461.1995

Comparison of the mechanisms of action of cholera toxin and the heat-stable enterotoxins of Escherichia coli.

J W Peterson 1, S C Whipp 1
PMCID: PMC173174  PMID: 7890409

Abstract

The mechanisms which enable cholera toxin (CT) and the Escherichia coli heat-stable enterotoxins (STa and STb) to stimulate intestinal secretion of water and electrolytes are only partially understood. CT evokes the synthesis of 3',5'-cyclic AMP (cAMP), and STa is known to elevate intestinal levels of 3',5'-cyclic GMP (cGMP). Neither of these recognized second messengers appears to mediate E. coli STb responses. We compared the secretory effects of CT, STa, and STb using the pig intestinal loop model and also measured the effects of toxin challenge on the synthesis of cAMP, cGMP, and prostaglandins (e.g., prostaglandin E2 [PGE2]), as well as on the release of 5-hydroxytryptamine (5-HT) from intestinal enterochromaffin cells. All three enterotoxins elicited fluid accumulation within a 2-h observation period. A combination of maximal doses of STa with STb yielded additive effects on fluid accumulation, which suggested different mechanisms of action for these toxins. Similarly, challenge of pig intestinal loops with a combination of CT and STb resulted in additive effects on fluid accumulation and luminal release of 5-HT. Unlike its effect on intestinal tissues from other animals, CT did not appear to elicit a dose-dependent cAMP response measurable in mucosal extracts from pig small intestine. In contrast, luminal fluid from CT-challenged pig intestinal loops contained dose-related amounts of cAMP and PGE2 that had been secreted from the mucosa. cAMP responses to STa or STb could not be demonstrated in either mucosal tissue or luminal fluid. In contrast, cGMP levels were increased in the intestinal fluid of loops challenged with STa but not in those challenged with STb. While the mechanisms of action of CT and STa are thought to involve impulse transmission via the enteric nervous system, we demonstrated significant stimulation of PGE2 synthesis and 5-HT release for CT and STb but very little for STa. We conclude from these data that the mechanisms of action of STa, STb, and CT are distinct, although the mode of action of STb may have some similarity to that of CT. Since STb stimulated the release of both PGE2 and 5-HT from the intestinal mucosa, the data suggested the potential for an effect of STb on the enteric nervous system.

Full Text

The Full Text of this article is available as a PDF (246.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderete J. F., Robertson D. C. Purification and chemical characterization of the heat-stable enterotoxin produced by porcine strains of enterotoxigenic Escherichia coli. Infect Immun. 1978 Mar;19(3):1021–1030. doi: 10.1128/iai.19.3.1021-1030.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beubler E., Kollar G., Saria A., Bukhave K., Rask-Madsen J. Involvement of 5-hydroxytryptamine, prostaglandin E2, and cyclic adenosine monophosphate in cholera toxin-induced fluid secretion in the small intestine of the rat in vivo. Gastroenterology. 1989 Feb;96(2 Pt 1):368–376. doi: 10.1016/0016-5085(89)91560-6. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Burch R. M., Jelsema C., Axelrod J. Cholera toxin and pertussis toxin stimulate prostaglandin E2 synthesis in a murine macrophage cell line. J Pharmacol Exp Ther. 1988 Feb;244(2):765–773. [PubMed] [Google Scholar]
  5. Dreyfus L. A., Urban R. G., Whipp S. C., Slaughter C., Tachias K., Kupersztoch Y. M., Drefus L. A. Purification of the STB enterotoxin of Escherichia coli and the role of selected amino acids on its secretion, stability and toxicity. Mol Microbiol. 1992 Aug;6(16):2397–2406. doi: 10.1111/j.1365-2958.1992.tb01414.x. [DOI] [PubMed] [Google Scholar]
  6. Eklund S., Brunsson I., Jodal M., Lundgren O. Changes in cyclic 3'5'-adenosine monophosphate tissue concentration and net fluid transport in the cat's small intestine elicited by cholera toxin, arachidonic acid, vasoactive intestinal polypeptide and 5-hydroxytryptamine. Acta Physiol Scand. 1987 Jan;129(1):115–125. doi: 10.1111/j.1748-1716.1987.tb08046.x. [DOI] [PubMed] [Google Scholar]
  7. Eklund S., Cassuto J., Jodal M., Lundgren O. The involvement of the enteric nervous system in the intestinal secretion evoked by cyclic adenosine 3'5'-monophosphate. Acta Physiol Scand. 1984 Feb;120(2):311–316. doi: 10.1111/j.1748-1716.1984.tb00139.x. [DOI] [PubMed] [Google Scholar]
  8. Eklund S., Jodal M., Lundgren O. The net fluid secretion caused by cyclic 3'5'-guanosine monophosphate in the rat jejunum in vivo is mediated by a local nervous reflex. Acta Physiol Scand. 1986 Sep;128(1):57–63. doi: 10.1111/j.1748-1716.1986.tb07949.x. [DOI] [PubMed] [Google Scholar]
  9. Field M. Intestinal secretion. Gastroenterology. 1974 May;66(5):1063–1084. [PubMed] [Google Scholar]
  10. Forsyth G. W., Hamilton D. L., Goertz K. E., Johnson M. R. Cholera toxin effects on fluid secretion, adenylate cyclase, and cyclic AMP in porcine small intestine. Infect Immun. 1978 Aug;21(2):373–380. doi: 10.1128/iai.21.2.373-380.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greenberg R. N., Murad F., Chang B., Robertson D. C., Guerrant R. L. Inhibition of Escherichia coli heat-stable enterotoxin by indomethacin and chlorpromazine. Infect Immun. 1980 Sep;29(3):908–913. doi: 10.1128/iai.29.3.908-913.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamilton D. L., Johnson M. R., Forsyth G. W., Roe W. E., Nielsen N. O. The effect of cholera toxin and heat labile and heat stable Escherichia coli enterotoxin on cyclic AMP concentrations in small intestinal mucosa of pig and rabbit. Can J Comp Med. 1978 Jul;42(3):327–331. [PMC free article] [PubMed] [Google Scholar]
  13. Kennedy D. J., Greenberg R. N., Dunn J. A., Abernathy R., Ryerse J. S., Guerrant R. L. Effects of Escherichia coli heat-stable enterotoxin STb on intestines of mice, rats, rabbits, and piglets. Infect Immun. 1984 Dec;46(3):639–643. doi: 10.1128/iai.46.3.639-643.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mathias J. R., Carlson G. M., Bertiger G., Martin J. L., Cohen S. Migrating action potential complex of cholera: a possible prostaglandin-induced response. Am J Physiol. 1977 May;232(5):E529–E534. doi: 10.1152/ajpendo.1977.232.5.E529. [DOI] [PubMed] [Google Scholar]
  15. Nilsson O., Cassuto J., Larsson P. A., Jodal M., Lidberg P., Ahlman H., Dahlström A., Lundgren O. 5-Hydroxytryptamine and cholera secretion: a histochemical and physiological study in cats. Gut. 1983 Jun;24(6):542–548. doi: 10.1136/gut.24.6.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Peterson J. W., Cantu J., Duncan S., Chopra A. K. Molecular mediators formed in the small intestine in response to cholera toxin. J Diarrhoeal Dis Res. 1993 Dec;11(4):227–234. [PubMed] [Google Scholar]
  17. Peterson J. W., Jackson C. A., Reitmeyer J. C. Synthesis of prostaglandins in cholera toxin-treated Chinese hamster ovary cells. Microb Pathog. 1990 Nov;9(5):345–353. doi: 10.1016/0882-4010(90)90068-2. [DOI] [PubMed] [Google Scholar]
  18. Peterson J. W., Lu Y., Duncan S., Cantu J., Chopra A. K. Interactions of intestinal mediators in the mode of action of cholera toxin. J Med Microbiol. 1994 Jul;41(1):3–9. doi: 10.1099/00222615-41-1-3. [DOI] [PubMed] [Google Scholar]
  19. Peterson J. W., Molina N. C., Houston C. W., Fader R. C. Elevated cAMP in intestinal epithelial cells during experimental cholera and salmonellosis. Toxicon. 1983;21(6):761–775. doi: 10.1016/0041-0101(83)90065-x. [DOI] [PubMed] [Google Scholar]
  20. Speelman P., Rabbani G. H., Bukhave K., Rask-Madsen J. Increased jejunal prostaglandin E2 concentrations in patients with acute cholera. Gut. 1985 Feb;26(2):188–193. doi: 10.1136/gut.26.2.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Van Loon F. P., Rabbani G. H., Bukhave K., Rask-Madsen J. Indomethacin decreases jejunal fluid secretion in addition to luminal release of prostaglandin E2 in patients with acute cholera. Gut. 1992 May;33(5):643–645. doi: 10.1136/gut.33.5.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weikel C. S., Nellans H. N., Guerrant R. L. In vivo and in vitro effects of a novel enterotoxin, STb, produced by Escherichia coli. J Infect Dis. 1986 May;153(5):893–901. doi: 10.1093/infdis/153.5.893. [DOI] [PubMed] [Google Scholar]
  23. Whipp S. C. Protease degradation of Escherichia coli heat-stable, mouse-negative, pig-positive enterotoxin. Infect Immun. 1987 Sep;55(9):2057–2060. doi: 10.1128/iai.55.9.2057-2060.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES