Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 May;63(5):1927–1932. doi: 10.1128/iai.63.5.1927-1932.1995

Use of porcine fibrinogen as a model glycoprotein to study the binding specificity of the three variants of K88 lectin.

C L'Hôte 1, S Berger 1, S Bourgerie 1, Y Duval-Iflah 1, R Julien 1, Y Karamanos 1
PMCID: PMC173245  PMID: 7729904

Abstract

Known glycoproteins were used to determine the differences occurring in the binding specificities of the three variants of the K88 lectin in an approach essentially based on lectin blotting. During the screening, it was demonstrated that each variant of the K88 lectin biotinylated via its amino groups (NbioK88) exhibited a characteristic binding to the three chains of porcine fibrinogen. NbioK88ab weakly bound to A alpha chains, NbioK88ac bound to B beta and gamma chains, and NbioK88ad bound only to the gamma chain. To validate this model, the oligosaccharide moieties of porcine fibrinogen were analyzed with glycosidases and by lectin blotting and sugar composition. Both the B beta chain and gamma chain carry biantennary N-glycans of the N-acetyllactosamine type that are not recognized by K88 lectins. A alpha chains are substituted by sialylated T antigen. O-glycans were also detected on B beta and gamma chains of porcine fibrinogen and contribute to the recognition of these chains by K88ac and K88ad fimbriae.

Full Text

The Full Text of this article is available as a PDF (276.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. J., Whitehead J. S., Kim Y. S. Interaction of Escherichia coli K88 antigen with porcine intestinal brush border membranes. Infect Immun. 1980 Sep;29(3):897–901. doi: 10.1128/iai.29.3.897-901.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bakker D., Willemsen P. T., Simons L. H., van Zijderveld F. G., de Graaf F. K. Characterization of the antigenic and adhesive properties of FaeG, the major subunit of K88 fimbriae. Mol Microbiol. 1992 Jan;6(2):247–255. doi: 10.1111/j.1365-2958.1992.tb02006.x. [DOI] [PubMed] [Google Scholar]
  3. Barondes S. H. Bifunctional properties of lectins: lectins redefined. Trends Biochem Sci. 1988 Dec;13(12):480–482. doi: 10.1016/0968-0004(88)90235-6. [DOI] [PubMed] [Google Scholar]
  4. Berger S., Karamanos Y., Schoentgen F., Julien R. Characterization and use of biotinylated Escherichia coli K99 lectin. Biochim Biophys Acta. 1994 Jun 12;1206(2):197–202. doi: 10.1016/0167-4838(94)90208-9. [DOI] [PubMed] [Google Scholar]
  5. Bijlsma I. G., de Nijs A., van der Meer C., Frik J. F. Different pig phenotypes affect adherence of Escherichia coli to jejunal brush borders by K88ab, K88ac, or K88ad antigen. Infect Immun. 1982 Sep;37(3):891–894. doi: 10.1128/iai.37.3.891-894.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blomberg L., Krivan H. C., Cohen P. S., Conway P. L. Piglet ileal mucus contains protein and glycolipid (galactosylceramide) receptors specific for Escherichia coli K88 fimbriae. Infect Immun. 1993 Jun;61(6):2526–2531. doi: 10.1128/iai.61.6.2526-2531.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bourgerie S., Karamanos Y., Berger S., Julien R. Use of resorufin-labelled N-glycopeptide in a high-performance liquid chromatography assay to monitor endoglycosidase activities during cultivation of Flavobacterium meningosepticum. Glycoconj J. 1992 Aug;9(4):162–167. doi: 10.1007/BF00731160. [DOI] [PubMed] [Google Scholar]
  8. Bögli C., Hofer A., Furlan M. Isolation of fibrinogen A alpha-chain by affinity chromatography on concanavalin A-sepharose. Thromb Haemost. 1988 Oct 31;60(2):308–310. [PubMed] [Google Scholar]
  9. Carlson D. M. Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem. 1968 Feb 10;243(3):616–626. [PubMed] [Google Scholar]
  10. Da Silva M. L., Tamura T., McBroom T., Rice K. G. Tyrosine derivatization and preparative purification of the sialyl and asialy-N-linked oligosaccharides from porcine fibrinogen. Arch Biochem Biophys. 1994 Jul;312(1):151–157. doi: 10.1006/abbi.1994.1293. [DOI] [PubMed] [Google Scholar]
  11. Damm J. B., Voshol H., Hård K., Kamerling J. P., Vliegenthart J. F. Analysis of N-acetyl-4-O-acetylneuraminic-acid-containing N-linked carbohydrate chains released by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F. Application to the structure determination of the carbohydrate chains of equine fibrinogen. Eur J Biochem. 1989 Mar 1;180(1):101–110. doi: 10.1111/j.1432-1033.1989.tb14620.x. [DOI] [PubMed] [Google Scholar]
  12. Debeire P., Montreuil J., Moczar E., van Halbeek H., Vliegenthart J. F. Primary structure of two major glycans of bovine fibrinogen. Eur J Biochem. 1985 Sep 16;151(3):607–611. doi: 10.1111/j.1432-1033.1985.tb09147.x. [DOI] [PubMed] [Google Scholar]
  13. Debray H., Montreuil J. Aleuria aurantia agglutinin. A new isolation procedure and further study of its specificity towards various glycopeptides and oligosaccharides. Carbohydr Res. 1989 Jan 15;185(1):15–26. doi: 10.1016/0008-6215(89)84017-0. [DOI] [PubMed] [Google Scholar]
  14. Doolittle R. F., Watt K. W., Cottrell B. A., Strong D. D., Riley M. The amino acid sequence of the alpha-chain of human fibrinogen. Nature. 1979 Aug 9;280(5722):464–468. doi: 10.1038/280464a0. [DOI] [PubMed] [Google Scholar]
  15. Erickson A. K., Willgohs J. A., McFarland S. Y., Benfield D. A., Francis D. H. Identification of two porcine brush border glycoproteins that bind the K88ac adhesin of Escherichia coli and correlation of these glycoproteins with the adhesive phenotype. Infect Immun. 1992 Mar;60(3):983–988. doi: 10.1128/iai.60.3.983-988.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gibbons R. A., Jones G. W., Sellwood R. An attempt to identify the intestinal receptor for the K88 adhesin by means of a haemagglutination inhibition test using glycoproteins and fractions from sow colostrum. J Gen Microbiol. 1975 Feb;86(2):228–240. doi: 10.1099/00221287-86-2-228. [DOI] [PubMed] [Google Scholar]
  17. Gilman P. B., Keane P., Martinez J. The role of the carbohydrate moiety in the biologic properties of fibrinogen. J Biol Chem. 1984 Mar 10;259(5):3248–3253. [PubMed] [Google Scholar]
  18. Guinée P. A., Jansen W. H., Agterberg C. M. Detection of the K99 antigen by means of agglutination and immunoelectrophoresis in Escherichia coli isolates from calves and its correlation with entertoxigenicity. Infect Immun. 1976 May;13(5):1369–1377. doi: 10.1128/iai.13.5.1369-1377.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Guinée P. A., Jansen W. H. Behavior of Escherichia coli K antigens K88ab, K88ac, and K88ad in immunoelectrophoresis, double diffusion, and hemagglutination. Infect Immun. 1979 Mar;23(3):700–705. doi: 10.1128/iai.23.3.700-705.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Haselbeck A., Schickaneder E., von der Eltz H., Hösel W. Structural characterization of glycoprotein carbohydrate chains by using diagoxigenin-labeled lectins on blots. Anal Biochem. 1990 Nov 15;191(1):25–30. doi: 10.1016/0003-2697(90)90381-i. [DOI] [PubMed] [Google Scholar]
  21. Jones G. W., Rutter J. M. Role of the K88 antigen in the pathogenesis of neonatal diarrhea caused by Escherichia coli in piglets. Infect Immun. 1972 Dec;6(6):918–927. doi: 10.1128/iai.6.6.918-927.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones G. W., Rutter J. M. The association of K88 antigen with haemagglutinating activity in porcine strains of Escherichia coli. J Gen Microbiol. 1974 Sep;84(1):135–144. doi: 10.1099/00221287-84-1-135. [DOI] [PubMed] [Google Scholar]
  23. Knibbs R. N., Goldstein I. J., Ratcliffe R. M., Shibuya N. Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. Comparison with other sialic acid-specific lectins. J Biol Chem. 1991 Jan 5;266(1):83–88. [PubMed] [Google Scholar]
  24. Köttgen E., Hell B., Müller C., Tauber R. Demonstration of glycosylation variants of human fibrinogen, using the new technique of glycoprotein lectin immunosorbent assay (GLIA). Biol Chem Hoppe Seyler. 1988 Oct;369(10):1157–1166. doi: 10.1515/bchm3.1988.369.2.1157. [DOI] [PubMed] [Google Scholar]
  25. Kühn K., Eble J. The structural bases of integrin-ligand interactions. Trends Cell Biol. 1994 Jul;4(7):256–261. doi: 10.1016/0962-8924(94)90124-4. [DOI] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Langer B. G., Weisel J. W., Dinauer P. A., Nagaswami C., Bell W. R. Deglycosylation of fibrinogen accelerates polymerization and increases lateral aggregation of fibrin fibers. J Biol Chem. 1988 Oct 15;263(29):15056–15063. [PubMed] [Google Scholar]
  29. Laux D. C., McSweegan E. F., Williams T. J., Wadolkowski E. A., Cohen P. S. Identification and characterization of mouse small intestine mucosal receptors for Escherichia coli K-12(K88ab). Infect Immun. 1986 Apr;52(1):18–25. doi: 10.1128/iai.52.1.18-25.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Li W. P., Zuber C., Roth J. Use of Phaseolus vulgaris leukoagglutinating lectin in histochemical and blotting techniques: a comparison of digoxigenin- and biotin-labelled lectins. Histochemistry. 1993 Nov;100(5):347–356. doi: 10.1007/BF00268933. [DOI] [PubMed] [Google Scholar]
  31. Lotan R., Skutelsky E., Danon D., Sharon N. The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem. 1975 Nov 10;250(21):8518–8523. [PubMed] [Google Scholar]
  32. Metcalfe J. W., Krogfelt K. A., Krivan H. C., Cohen P. S., Laux D. C. Characterization and identification of a porcine small intestine mucus receptor for the K88ab fimbrial adhesin. Infect Immun. 1991 Jan;59(1):91–96. doi: 10.1128/iai.59.1.91-96.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ouadia A., Karamanos Y., Julien R. Detection of the ganglioside N-glycolyl-neuraminyl-lactosyl-ceramide by biotinylated Escherichia coli K99 lectin. Glycoconj J. 1992 Feb;9(1):21–26. doi: 10.1007/BF00731174. [DOI] [PubMed] [Google Scholar]
  34. Parry S. H., Porter P. Immunological aspects of cell membrane adhesion demonstrated by porcine enteropathogenic Escherichia coli. Immunology. 1978 Jan;34(1):41–49. [PMC free article] [PubMed] [Google Scholar]
  35. Payne D., O'Reilly M., Williamson D. The K88 fimbrial adhesin of enterotoxigenic Escherichia coli binds to beta 1-linked galactosyl residues in glycosphingolipids. Infect Immun. 1993 Sep;61(9):3673–3677. doi: 10.1128/iai.61.9.3673-3677.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Plummer T. H., Jr, Tarentino A. L. Purification of the oligosaccharide-cleaving enzymes of Flavobacterium meningosepticum. Glycobiology. 1991 Jun;1(3):257–263. doi: 10.1093/glycob/1.3.257. [DOI] [PubMed] [Google Scholar]
  37. Rinderle S. J., Goldstein I. J., Matta K. L., Ratcliffe R. M. Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T- (or cryptic T)-antigen. J Biol Chem. 1989 Sep 25;264(27):16123–16131. [PubMed] [Google Scholar]
  38. Seignole D., Grange P., Duval-Iflah Y., Mouricout M. Characterization of O-glycan moieties of the 210 and 240 kDa pig intestinal receptors for Escherichia coli K88ac fimbriae. Microbiology. 1994 Sep;140(Pt 9):2467–2473. doi: 10.1099/13500872-140-9-2467. [DOI] [PubMed] [Google Scholar]
  39. Sellwood R., Gibbons R. A., Jones G. W., Rutter J. M. Adhesion of enteropathogenic Escherichia coli to pig intestinal brush borders: the existence of two pig phenotypes. J Med Microbiol. 1975 Aug;8(3):405–411. doi: 10.1099/00222615-8-3-405. [DOI] [PubMed] [Google Scholar]
  40. Sellwood R. The interaction of the K88 antigen with porcine intestinal epithelial cell brush borders. Biochim Biophys Acta. 1980 Oct 1;632(2):326–335. doi: 10.1016/0304-4165(80)90090-2. [DOI] [PubMed] [Google Scholar]
  41. Spik G., Strecker G., Fournet B., Bouquelet S., Montreuil J., Dorland L., van Halbeek H., Vliegenthart J. F. Primary structure of the glycans from human lactotransferrin. Eur J Biochem. 1982 Jan;121(2):413–419. doi: 10.1111/j.1432-1033.1982.tb05803.x. [DOI] [PubMed] [Google Scholar]
  42. Staley T. E., Wilson I. B. Soluble pig intestinal cell membrane components with affinities for E. coli K88+ antigen. Mol Cell Biochem. 1983;52(2):177–189. doi: 10.1007/BF00224926. [DOI] [PubMed] [Google Scholar]
  43. Townsend R. R., Hilliker E., Li Y. T., Laine R. A., Bell W. R., Lee Y. C. Carbohydrate structure of human fibrinogen. Use of 300-MHz 1H-NMR to characterize glycosidase-treated glycopeptides. J Biol Chem. 1982 Aug 25;257(16):9704–9710. [PubMed] [Google Scholar]
  44. Wang W. C., Cummings R. D. The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked alpha-2,3 to penultimate galactose residues. J Biol Chem. 1988 Apr 5;263(10):4576–4585. [PubMed] [Google Scholar]
  45. Watt K. W., Cottrell B. A., Strong D. D., Doolittle R. F. Amino acid sequence studies on the alpha chain of human fibrinogen. Overlapping sequences providing the complete sequence. Biochemistry. 1979 Nov 27;18(24):5410–5416. doi: 10.1021/bi00591a024. [DOI] [PubMed] [Google Scholar]
  46. Watt K. W., Takagi T., Doolittle R. F. Amino acid sequence of the beta chain of human fibrinogen. Biochemistry. 1979 Jan 9;18(1):68–76. doi: 10.1021/bi00568a011. [DOI] [PubMed] [Google Scholar]
  47. Willemsen P. T., de Graaf F. K. Age and serotype dependent binding of K88 fimbriae to porcine intestinal receptors. Microb Pathog. 1992 May;12(5):367–375. doi: 10.1016/0882-4010(92)90099-a. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES