Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 May;63(5):1947–1954. doi: 10.1128/iai.63.5.1947-1954.1995

Antibody and cytokine responses in a mouse pulmonary model of Shigella flexneri serotype 2a infection.

L L van de Verg 1, C P Mallett 1, H H Collins 1, T Larsen 1, C Hammack 1, T L Hale 1
PMCID: PMC173248  PMID: 7729907

Abstract

A murine pulmonary model was used to study the mucosal immune response to Shigella flexneri serotype 2a infection. Inoculation of BALB/cJ mice with shigellae via the intranasal route resulted in bacterial invasion of bronchial and alveolar epithelia with concomitant development of acute suppurative bronchiolitis and subsequent development of lethal pneumonia. The pathology of pulmonary lesions resembled the colitis that characterizes shigellosis in humans and primates. Significant protection against a lethal dose of S. flexneri 2a was observed in mice previously infected with two sublethal doses of the homologous strain. Immunity against lethal challenge was associated with decreased bacterial invasion of the mucosal epithelium. Over the course of two sublethal challenges, which constituted primary and secondary immunizations, mice developed pulmonary and serum immunoglobulin G and A antibody recognizing both lipopolysaccharide and invasion plasmid antigens IpaB and IpaC. Immune mice and naive control mice differed in lung lavage cytokine levels following lethal challenge. Immune mice developed significantly elevated levels of pulmonary gamma interferon within 6 h of challenge, while naive control mice developed elevated levels of this cytokine later during the initial 24-h period. Both groups had elevated levels of gamma interferon during the 24- to 48-h period of infection. Both groups also had elevated levels of tumor necrosis factor alpha within 6 h of challenge, but the control mice had significantly higher levels at the 48- and 72-h time points. Elevated levels of interleukin-4 were observed only in immunized mice. This cytokine appeared within 24 h and receded between 48 and 72 h. Fluorescence-activated cell sorter analysis of lung parenchymal cells showed that both groups experienced an initial influx of monocytes, but the proportion of this cell type began to recede in immunized mice after 48 h of infection, while peak levels were maintained in the control animals. These studies suggest that elements of local B lymphocyte activity, as well as Th1 and Th2 lymphocyte activity, may contribute to the survival of immune mice after intranasal challenge with shigellae.

Full Text

The Full Text of this article is available as a PDF (846.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black R. E., Levine M. M., Clements M. L., Losonsky G., Herrington D., Berman S., Formal S. B. Prevention of shigellosis by a Salmonella typhi-Shigella sonnei bivalent vaccine. J Infect Dis. 1987 Jun;155(6):1260–1265. doi: 10.1093/infdis/155.6.1260. [DOI] [PubMed] [Google Scholar]
  2. Buysse J. M., Stover C. K., Oaks E. V., Venkatesan M., Kopecko D. J. Molecular cloning of invasion plasmid antigen (ipa) genes from Shigella flexneri: analysis of ipa gene products and genetic mapping. J Bacteriol. 1987 Jun;169(6):2561–2569. doi: 10.1128/jb.169.6.2561-2569.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Czerkinsky C. C., Nilsson L. A., Nygren H., Ouchterlony O., Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods. 1983 Dec 16;65(1-2):109–121. doi: 10.1016/0022-1759(83)90308-3. [DOI] [PubMed] [Google Scholar]
  4. FRETER R. Experimental enteric Shigella and Vibrio infections in mice and guinea pigs. J Exp Med. 1956 Sep 1;104(3):411–418. doi: 10.1084/jem.104.3.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Formal S. B., Oaks E. V., Olsen R. E., Wingfield-Eggleston M., Snoy P. J., Cogan J. P. Effect of prior infection with virulent Shigella flexneri 2a on the resistance of monkeys to subsequent infection with Shigella sonnei. J Infect Dis. 1991 Sep;164(3):533–537. doi: 10.1093/infdis/164.3.533. [DOI] [PubMed] [Google Scholar]
  6. Hartman A. B., Powell C. J., Schultz C. L., Oaks E. V., Eckels K. H. Small-animal model to measure efficacy and immunogenicity of Shigella vaccine strains. Infect Immun. 1991 Nov;59(11):4075–4083. doi: 10.1128/iai.59.11.4075-4083.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hartman A. B., Van de Verg L. L., Collins H. H., Jr, Tang D. B., Bendiuk N. O., Taylor D. N., Powell C. J. Local immune response and protection in the guinea pig keratoconjunctivitis model following immunization with Shigella vaccines. Infect Immun. 1994 Feb;62(2):412–420. doi: 10.1128/iai.62.2.412-420.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. High N., Mounier J., Prévost M. C., Sansonetti P. J. IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole. EMBO J. 1992 May;11(5):1991–1999. doi: 10.1002/j.1460-2075.1992.tb05253.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Labrec E. H., Schneider H., Magnani T. J., Formal S. B. EPITHELIAL CELL PENETRATION AS AN ESSENTIAL STEP IN THE PATHOGENESIS OF BACILLARY DYSENTERY. J Bacteriol. 1964 Nov;88(5):1503–1518. doi: 10.1128/jb.88.5.1503-1518.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MacDonald T. T., Murch S. H., Nicholls S. W., Breese E. J. Diarrhoeal disease: current concepts and future challenges. Intestinal cytokines in inflammatory bowel disease and invasive diarrhoea. Trans R Soc Trop Med Hyg. 1993 Dec;87 (Suppl 3):23–26. doi: 10.1016/0035-9203(93)90532-u. [DOI] [PubMed] [Google Scholar]
  11. Mallett C. P., VanDeVerg L., Collins H. H., Hale T. L. Evaluation of Shigella vaccine safety and efficacy in an intranasally challenged mouse model. Vaccine. 1993;11(2):190–196. doi: 10.1016/0264-410x(93)90016-q. [DOI] [PubMed] [Google Scholar]
  12. Mel D. M., Terzin A. L., Vuksić L. Studies on vaccination against bacillary dysentery. 1. Immunization of mice against experimental Shigella infection. Bull World Health Organ. 1965;32(5):633–636. [PMC free article] [PubMed] [Google Scholar]
  13. Michalek S. M., Moore R. N., McGhee J. R., Rosenstreich D. L., Mergenhagen S. E. The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxim. J Infect Dis. 1980 Jan;141(1):55–63. doi: 10.1093/infdis/141.1.55. [DOI] [PubMed] [Google Scholar]
  14. Mulligan M. S., Jones M. L., Vaporciyan A. A., Howard M. C., Ward P. A. Protective effects of IL-4 and IL-10 against immune complex-induced lung injury. J Immunol. 1993 Nov 15;151(10):5666–5674. [PubMed] [Google Scholar]
  15. Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Oaks E. V., Hale T. L., Formal S. B. Serum immune response to Shigella protein antigens in rhesus monkeys and humans infected with Shigella spp. Infect Immun. 1986 Jul;53(1):57–63. doi: 10.1128/iai.53.1.57-63.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sasakawa C., Kamata K., Sakai T., Murayama S. Y., Makino S., Yoshikawa M. Molecular alteration of the 140-megadalton plasmid associated with loss of virulence and Congo red binding activity in Shigella flexneri. Infect Immun. 1986 Feb;51(2):470–475. doi: 10.1128/iai.51.2.470-475.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Speelman P., Kabir I., Islam M. Distribution and spread of colonic lesions in shigellosis: a colonoscopic study. J Infect Dis. 1984 Dec;150(6):899–903. doi: 10.1093/infdis/150.6.899. [DOI] [PubMed] [Google Scholar]
  19. Stein-Streilein J. Immunobiology of lymphocytes in the lung. Reg Immunol. 1988 Sep-Oct;1(2):128–136. [PubMed] [Google Scholar]
  20. Tracey K. J., Beutler B., Lowry S. F., Merryweather J., Wolpe S., Milsark I. W., Hariri R. J., Fahey T. J., 3rd, Zentella A., Albert J. D. Shock and tissue injury induced by recombinant human cachectin. Science. 1986 Oct 24;234(4775):470–474. doi: 10.1126/science.3764421. [DOI] [PubMed] [Google Scholar]
  21. VOINO-IASENETSKII M. V., KHAVKIN T. N. IZUCHENIE VNUTRI'EPITELIAL'NO I LOKALIZATSII VOZBUDITELE I DIZENTERII PRI POMOSHCHI FLUORESTSIRUIUSHCHIKH ANTITEL. Zh Mikrobiol Epidemiol Immunobiol. 1964 Apr;41:98–100. [PubMed] [Google Scholar]
  22. VOINO-YASENETSKY M. V., VOINO-YASENETSKAYA M. K. Experimental pneumonia caused by bacteria of the Shigella group. Acta Morphol Acad Sci Hung. 1962;11:439–454. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES