Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jun;63(6):2213–2220. doi: 10.1128/iai.63.6.2213-2220.1995

Characterization of a Helicobacter pylori neutrophil-activating protein.

D J Evans Jr 1, D G Evans 1, T Takemura 1, H Nakano 1, H C Lampert 1, D Y Graham 1, D N Granger 1, P R Kvietys 1
PMCID: PMC173288  PMID: 7768601

Abstract

Helicobacter pylori-associated gastritis is mainly an inflammatory cell response. In earlier work we showed that activation of human neutrophils by a cell-free water extract of H. pylori is characterized by increased expression of neutrophil CD11b/CD18 and increased adhesiveness to endothelial cells. The work reported here indicates that the neutrophil-activating factor is a 150,000-molecular-weight protein (150K protein). Neutrophil proadhesive activity copurified with this protein, which is a polymer of identical 15K subunits. Specific antibody, prepared against the purified 15K subunit, neutralized the proadhesive activity of the pure protein and of water extracts obtained from different strains of H. pylori. The gene (napA) for this protein (termed HP-NAP, for H. pylori neutrophil-activating protein) was detected, by PCR amplification, in all of the H. pylori isolates tested; however, there was considerable strain variation in the level of expression of HP-NAP activity in vitro. HP-NAP could play an important role in the gastric inflammatory response to H. pylori infection.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allred C. D., Margetts J., Hill H. R. Luminol-induced neutrophil chemiluminescence. Biochim Biophys Acta. 1980 Aug 13;631(2):380–385. doi: 10.1016/0304-4165(80)90311-6. [DOI] [PubMed] [Google Scholar]
  2. Andrews S. C., Smith J. M., Yewdall S. J., Guest J. R., Harrison P. M. Bacterioferritins and ferritins are distantly related in evolution. Conservation of ferroxidase-centre residues. FEBS Lett. 1991 Nov 18;293(1-2):164–168. doi: 10.1016/0014-5793(91)81177-a. [DOI] [PubMed] [Google Scholar]
  3. Arnaout M. A., Lanier L. L., Faller D. V. Relative contribution of the leukocyte molecules Mo1, LFA-1, and p150,95 (LeuM5) in adhesion of granulocytes and monocytes to vascular endothelium is tissue- and stimulus-specific. J Cell Physiol. 1988 Nov;137(2):305–309. doi: 10.1002/jcp.1041370214. [DOI] [PubMed] [Google Scholar]
  4. Arnaout M. A., Todd R. F., 3rd, Dana N., Melamed J., Schlossman S. F., Colten H. R. Inhibition of phagocytosis of complement C3- or immunoglobulin G-coated particles and of C3bi binding by monoclonal antibodies to a monocyte-granulocyte membrane glycoprotein (Mol). J Clin Invest. 1983 Jul;72(1):171–179. doi: 10.1172/JCI110955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blaser M. J. Hypotheses on the pathogenesis and natural history of Helicobacter pylori-induced inflammation. Gastroenterology. 1992 Feb;102(2):720–727. doi: 10.1016/0016-5085(92)90126-j. [DOI] [PubMed] [Google Scholar]
  6. Brooks B. W., Young N. M., Watson D. C., Robertson R. H., Sugden E. A., Nielsen K. H., Becker S. A. Mycobacterium paratuberculosis antigen D: characterization and evidence that it is a bacterioferritin. J Clin Microbiol. 1991 Aug;29(8):1652–1658. doi: 10.1128/jcm.29.8.1652-1658.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bryant A. E., Bergstrom R., Zimmerman G. A., Salyer J. L., Hill H. R., Tweten R. K., Sato H., Stevens D. L. Clostridium perfringens invasiveness is enhanced by effects of theta toxin upon PMNL structure and function: the roles of leukocytotoxicity and expression of CD11/CD18 adherence glycoprotein. FEMS Immunol Med Microbiol. 1993 Dec;7(4):321–336. doi: 10.1111/j.1574-695X.1993.tb00414.x. [DOI] [PubMed] [Google Scholar]
  8. Correa P., Fox J., Fontham E., Ruiz B., Lin Y. P., Zavala D., Taylor N., Mackinley D., de Lima E., Portilla H. Helicobacter pylori and gastric carcinoma. Serum antibody prevalence in populations with contrasting cancer risks. Cancer. 1990 Dec 15;66(12):2569–2574. doi: 10.1002/1097-0142(19901215)66:12<2569::aid-cncr2820661220>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  9. Cover T. L., Blaser M. J. Helicobacter pylori and gastroduodenal disease. Annu Rev Med. 1992;43:135–145. doi: 10.1146/annurev.me.43.020192.001031. [DOI] [PubMed] [Google Scholar]
  10. Crabtree J. E., Shallcross T. M., Heatley R. V., Wyatt J. I. Mucosal tumour necrosis factor alpha and interleukin-6 in patients with Helicobacter pylori associated gastritis. Gut. 1991 Dec;32(12):1473–1477. doi: 10.1136/gut.32.12.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Craig P. M., Territo M. C., Karnes W. E., Walsh J. H. Helicobacter pylori secretes a chemotactic factor for monocytes and neutrophils. Gut. 1992 Aug;33(8):1020–1023. doi: 10.1136/gut.33.8.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dana N., Styrt B., Griffin J. D., Todd R. F., 3rd, Klempner M. S., Arnaout M. A. Two functional domains in the phagocyte membrane glycoprotein Mo1 identified with monoclonal antibodies. J Immunol. 1986 Nov 15;137(10):3259–3263. [PubMed] [Google Scholar]
  13. Davies G. R., Banatvala N., Collins C. E., Sheaff M. T., Abdi Y., Clements L., Rampton D. S. Relationship between infective load of Helicobacter pylori and reactive oxygen metabolite production in antral mucosa. Scand J Gastroenterol. 1994 May;29(5):419–424. doi: 10.3109/00365529409096832. [DOI] [PubMed] [Google Scholar]
  14. Davies G. R., Simmonds N. J., Stevens T. R., Grandison A., Blake D. R., Rampton D. S. Mucosal reactive oxygen metabolite production in duodenal ulcer disease. Gut. 1992 Nov;33(11):1467–1472. doi: 10.1136/gut.33.11.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Evans D. G., Evans D. J., Jr, Graham D. Y. Adherence and internalization of Helicobacter pylori by HEp-2 cells. Gastroenterology. 1992 May;102(5):1557–1567. doi: 10.1016/0016-5085(92)91714-f. [DOI] [PubMed] [Google Scholar]
  16. Evans D. J., Jr, Evans D. G., Lampert H. C., Nakano H. Identification of four new prokaryotic bacterioferritins, from Helicobacter pylori, Anabaena variabilis, Bacillus subtilis and Treponema pallidum, by analysis of gene sequences. Gene. 1995 Feb 3;153(1):123–127. doi: 10.1016/0378-1119(94)00774-m. [DOI] [PubMed] [Google Scholar]
  17. Fehniger T. E., Radolf J. D., Lovett M. A. Properties of an ordered ring structure formed by recombinant Treponema pallidum surface antigen 4D. J Bacteriol. 1986 Mar;165(3):732–739. doi: 10.1128/jb.165.3.732-739.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fiocca R., Luinetti O., Villani L., Chiaravalli A. M., Capella C., Solcia E. Epithelial cytotoxicity, immune responses, and inflammatory components of Helicobacter pylori gastritis. Scand J Gastroenterol Suppl. 1994;205:11–21. [PubMed] [Google Scholar]
  19. Frazier B. A., Pfeifer J. D., Russell D. G., Falk P., Olsén A. N., Hammar M., Westblom T. U., Normark S. J. Paracrystalline inclusions of a novel ferritin containing nonheme iron, produced by the human gastric pathogen Helicobacter pylori: evidence for a third class of ferritins. J Bacteriol. 1993 Feb;175(4):966–972. doi: 10.1128/jb.175.4.966-972.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gbarah A., Gahmberg C. G., Boner G., Sharon N. The leukocyte surface antigens CD11b and CD18 mediate the oxidative burst activation of human peritoneal macrophages induced by type 1 fimbriated Escherichia coli. J Leukoc Biol. 1993 Aug;54(2):111–113. doi: 10.1002/jlb.54.2.111. [DOI] [PubMed] [Google Scholar]
  21. Graham D. Y. Helicobacter pylori: its epidemiology and its role in duodenal ulcer disease. J Gastroenterol Hepatol. 1991 Mar-Apr;6(2):105–113. doi: 10.1111/j.1440-1746.1991.tb01448.x. [DOI] [PubMed] [Google Scholar]
  22. Graham D. Y., Lew G. M., Evans D. G., Evans D. J., Jr, Klein P. D. Effect of triple therapy (antibiotics plus bismuth) on duodenal ulcer healing. A randomized controlled trial. Ann Intern Med. 1991 Aug 15;115(4):266–269. doi: 10.7326/0003-4819-115-4-266. [DOI] [PubMed] [Google Scholar]
  23. Graham D. Y., Lew G. M., Klein P. D., Evans D. G., Evans D. J., Jr, Saeed Z. A., Malaty H. M. Effect of treatment of Helicobacter pylori infection on the long-term recurrence of gastric or duodenal ulcer. A randomized, controlled study. Ann Intern Med. 1992 May 1;116(9):705–708. doi: 10.7326/0003-4819-116-9-705. [DOI] [PubMed] [Google Scholar]
  24. Gyllenhammar H. Lucigenin chemiluminescence in the assessment of neutrophil superoxide production. J Immunol Methods. 1987 Mar 12;97(2):209–213. doi: 10.1016/0022-1759(87)90461-3. [DOI] [PubMed] [Google Scholar]
  25. Hanazawa S., Murakami Y., Takeshita A., Kitami H., Ohta K., Amano S., Kitano S. Porphyromonas gingivalis fimbriae induce expression of the neutrophil chemotactic factor KC gene of mouse peritoneal macrophages: role of protein kinase C. Infect Immun. 1992 Apr;60(4):1544–1549. doi: 10.1128/iai.60.4.1544-1549.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hansson L. E., Engstrand L., Nyrén O., Evans D. J., Jr, Lindgren A., Bergström R., Andersson B., Athlin L., Bendtsen O., Tracz P. Helicobacter pylori infection: independent risk indicator of gastric adenocarcinoma. Gastroenterology. 1993 Oct;105(4):1098–1103. doi: 10.1016/0016-5085(93)90954-b. [DOI] [PubMed] [Google Scholar]
  27. Harris P., Ralph P. Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines. J Leukoc Biol. 1985 Apr;37(4):407–422. doi: 10.1002/jlb.37.4.407. [DOI] [PubMed] [Google Scholar]
  28. Hentschel E., Brandstätter G., Dragosics B., Hirschl A. M., Nemec H., Schütze K., Taufer M., Wurzer H. Effect of ranitidine and amoxicillin plus metronidazole on the eradication of Helicobacter pylori and the recurrence of duodenal ulcer. N Engl J Med. 1993 Feb 4;328(5):308–312. doi: 10.1056/NEJM199302043280503. [DOI] [PubMed] [Google Scholar]
  29. Hébert C. A., Vitangcol R. V., Baker J. B. Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J Biol Chem. 1991 Oct 5;266(28):18989–18994. [PubMed] [Google Scholar]
  30. Karttunen R., Andersson G., Poikonen K., Kosunen T. U., Karttunen T., Juutinen K., Niemelä S. Helicobacter pylori induces lymphocyte activation in peripheral blood cultures. Clin Exp Immunol. 1990 Dec;82(3):485–488. doi: 10.1111/j.1365-2249.1990.tb05476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kozol R., McCurdy B., Czanko R. A neutrophil chemotactic factor present in H. pylori but absent in H. mustelae. Dig Dis Sci. 1993 Jan;38(1):137–141. doi: 10.1007/BF01296786. [DOI] [PubMed] [Google Scholar]
  32. Kurose I., Granger D. N., Evans D. J., Jr, Evans D. G., Graham D. Y., Miyasaka M., Anderson D. C., Wolf R. E., Cepinskas G., Kvietys P. R. Helicobacter pylori-induced microvascular protein leakage in rats: role of neutrophils, mast cells, and platelets. Gastroenterology. 1994 Jul;107(1):70–79. doi: 10.1016/0016-5085(94)90062-0. [DOI] [PubMed] [Google Scholar]
  33. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  34. Mai U. E., Perez-Perez G. I., Allen J. B., Wahl S. M., Blaser M. J., Smith P. D. Surface proteins from Helicobacter pylori exhibit chemotactic activity for human leukocytes and are present in gastric mucosa. J Exp Med. 1992 Feb 1;175(2):517–525. doi: 10.1084/jem.175.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mai U. E., Perez-Perez G. I., Wahl L. M., Wahl S. M., Blaser M. J., Smith P. D. Soluble surface proteins from Helicobacter pylori activate monocytes/macrophages by lipopolysaccharide-independent mechanism. J Clin Invest. 1991 Mar;87(3):894–900. doi: 10.1172/JCI115095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mégraud F., Lamouliatte H. Helicobacter pylori and duodenal ulcer. Evidence suggesting causation. Dig Dis Sci. 1992 May;37(5):769–772. doi: 10.1007/BF01296437. [DOI] [PubMed] [Google Scholar]
  37. Nielsen H., Andersen L. P. Activation of human phagocyte oxidative metabolism by Helicobacter pylori. Gastroenterology. 1992 Dec;103(6):1747–1753. doi: 10.1016/0016-5085(92)91430-c. [DOI] [PubMed] [Google Scholar]
  38. Nielsen H., Andersen L. P. Chemotactic activity of Helicobacter pylori sonicate for human polymorphonuclear leucocytes and monocytes. Gut. 1992 Jun;33(6):738–742. doi: 10.1136/gut.33.6.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Olivieri R., Bugnoli M., Armellini D., Bianciardi S., Rappuoli R., Bayeli P. F., Abate L., Esposito E., de Gregorio L., Aziz J. Growth of Helicobacter pylori in media containing cyclodextrins. J Clin Microbiol. 1993 Jan;31(1):160–162. doi: 10.1128/jcm.31.1.160-162.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Owhashi M., Futaki S., Kitagawa K., Horii Y., Maruyama H., Hayashi H., Nawa Y. Molecular cloning and characterization of a novel neutrophil chemotactic factor from a filarial parasite. Mol Immunol. 1993 Oct;30(14):1315–1320. doi: 10.1016/0161-5890(93)90048-g. [DOI] [PubMed] [Google Scholar]
  41. Parsonnet J., Friedman G. D., Vandersteen D. P., Chang Y., Vogelman J. H., Orentreich N., Sibley R. K. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med. 1991 Oct 17;325(16):1127–1131. doi: 10.1056/NEJM199110173251603. [DOI] [PubMed] [Google Scholar]
  42. Power C. A., Proudfoot A. E., Magnenat E., Bacon K. B., Wells T. N. Molecular cloning and characterisation of a neutrophil chemotactic protein from porcine platelets. Eur J Biochem. 1994 Apr 15;221(2):713–719. doi: 10.1111/j.1432-1033.1994.tb18784.x. [DOI] [PubMed] [Google Scholar]
  43. Rautelin H., Blomberg B., Fredlund H., Järnerot G., Danielsson D. Incidence of Helicobacter pylori strains activating neutrophils in patients with peptic ulcer disease. Gut. 1993 May;34(5):599–603. doi: 10.1136/gut.34.5.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Reymunde A., Deren J., Nachamkin I., Oppenheim D., Weinbaum G. Production of chemoattractant by Helicobacter pylori. Dig Dis Sci. 1993 Sep;38(9):1697–1701. doi: 10.1007/BF01303180. [DOI] [PubMed] [Google Scholar]
  45. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Theil E. C. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem. 1987;56:289–315. doi: 10.1146/annurev.bi.56.070187.001445. [DOI] [PubMed] [Google Scholar]
  47. Wallace J. L. Possible mechanisms and mediators of gastritis associated with Helicobacter pylori infection. Scand J Gastroenterol Suppl. 1991;187:65–70. [PubMed] [Google Scholar]
  48. Weitzman S. A., Gordon L. I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood. 1990 Aug 15;76(4):655–663. [PubMed] [Google Scholar]
  49. Wick M. J., Madara J. L., Fields B. N., Normark S. J. Molecular cross talk between epithelial cells and pathogenic microorganisms. Cell. 1991 Nov 15;67(4):651–659. doi: 10.1016/0092-8674(91)90061-3. [DOI] [PubMed] [Google Scholar]
  50. Wotherspoon A. C., Doglioni C., Diss T. C., Pan L., Moschini A., de Boni M., Isaacson P. G. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet. 1993 Sep 4;342(8871):575–577. doi: 10.1016/0140-6736(93)91409-f. [DOI] [PubMed] [Google Scholar]
  51. Yoshida N., Granger D. N., Anderson D. C., Rothlein R., Lane C., Kvietys P. R. Anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Am J Physiol. 1992 Jun;262(6 Pt 2):H1891–H1898. doi: 10.1152/ajpheart.1992.262.6.H1891. [DOI] [PubMed] [Google Scholar]
  52. Yoshida N., Granger D. N., Evans D. J., Jr, Evans D. G., Graham D. Y., Anderson D. C., Wolf R. E., Kvietys P. R. Mechanisms involved in Helicobacter pylori-induced inflammation. Gastroenterology. 1993 Nov;105(5):1431–1440. doi: 10.1016/0016-5085(93)90148-6. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES