Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jun;63(6):2317–2322. doi: 10.1128/iai.63.6.2317-2322.1995

Human microvascular endothelial tissue culture cell model for studying pathogenesis of Brazilian purpuric fever.

F D Quinn 1, R S Weyant 1, M J Worley 1, E H White 1, E A Utt 1, E A Ades 1
PMCID: PMC173303  PMID: 7768615

Abstract

Brazilian purpuric fever (BPF) is a fulminant pediatric disease characterized by fever, with rapid progression to purpura, hypotensive shock, and death. All known BPF cases have been caused by three clones of Haemophilus influenzae biogroup aegyptius and have occurred in either Brazil or Australia. Using an immortalized line of human vascular endothelial cells, we developed an in vitro assay that identifies all known BPF-causing H. influenzae biogroup aegyptius strains (R. S. Weyant, F. D. Quinn, E. A. Utt, M. Worley, V. G. George, F. J. Candal, and E. W. Ades, J. Infect. Dis. 169:430-433, 1994). With multiplicities of infection (MOIs) as low as one bacterium per 1,000 tissue culture cells, BPF-associated strains produce a unique cytotoxic effect in which the tissue culture cells detach and aggregate in large floating masses after 48 h of incubation. In this study, using a BPF-associated strain and a non-BPF-associated control, we demonstrated that strains which produce the cytotoxic phenotype were able to replicate intracellularly whereas non-BPF-associated strains, with MOIs of > or = 1,000 did not replicate and did not produce the phenotype. We also showed that this phenotype is not caused by the activity of an endotoxin or the release of some other compound from the bacterial cell, since neither gamma irradiation-killed whole BPF clone bacteria nor bacterial cell fractions at MOIs of > 1,000 produced the cytotoxic effect. Furthermore, bacteria in numbers equal to MOIs of > 1,000 treated with chloramphenicol did not produce the cytotoxic phenotype, suggesting a requirement for bacterial protein synthesis. In addition, viable bacteria separated from the tissue culture monolayer by a 0.2-micron-pore-size membrane also failed to produce the phenotype. The ability of the bacterium to invade, replicate, and produce the phenotype appears to be primarily parasite directed since phagocytosis, pinocytosis, and eukaryotic protein synthesis inhibitors, including cycloheximide, cytochalasin D, and methylamine, had no effect on the ability of the bacterium to invade and cause a cytotoxic response. Understanding the basic mechanisms involved in this tissue-destructive process should enhance our knowledge of the general pathogenesis of BPF.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ades E. W., Candal F. J., Swerlick R. A., George V. G., Summers S., Bosse D. C., Lawley T. J. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol. 1992 Dec;99(6):683–690. doi: 10.1111/1523-1747.ep12613748. [DOI] [PubMed] [Google Scholar]
  2. Barbieri Neto J. Brazilian purpuric fever. Lancet. 1988 Apr 16;1(8590):883–884. doi: 10.1016/s0140-6736(88)91630-3. [DOI] [PubMed] [Google Scholar]
  3. Birkness K. A., George V. G., White E. H., Stephens D. S., Quinn F. D. Intracellular growth of Afipia felis, a putative etiologic agent of cat scratch disease. Infect Immun. 1992 Jun;60(6):2281–2287. doi: 10.1128/iai.60.6.2281-2287.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clerc P., Sansonetti P. J. Entry of Shigella flexneri into HeLa cells: evidence for directed phagocytosis involving actin polymerization and myosin accumulation. Infect Immun. 1987 Nov;55(11):2681–2688. doi: 10.1128/iai.55.11.2681-2688.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drevets D. A., Canono B. P., Leenen P. J., Campbell P. A. Gentamicin kills intracellular Listeria monocytogenes. Infect Immun. 1994 Jun;62(6):2222–2228. doi: 10.1128/iai.62.6.2222-2228.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farley M. M., Whitney A. M., Spellman P., Quinn F. D., Weyant R. S., Mayer L., Stephens D. S. Analysis of the attachment and invasion of human epithelial cells by Haemophilus influenzae biogroup aegyptius. J Infect Dis. 1992 Jun;165 (Suppl 1):S111–S114. doi: 10.1093/infdis/165-supplement_1-s111. [DOI] [PubMed] [Google Scholar]
  7. Finlay B. B., Falkow S. Common themes in microbial pathogenicity. Microbiol Rev. 1989 Jun;53(2):210–230. doi: 10.1128/mr.53.2.210-230.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Finlay B. B., Heffron F., Falkow S. Epithelial cell surfaces induce Salmonella proteins required for bacterial adherence and invasion. Science. 1989 Feb 17;243(4893):940–943. doi: 10.1126/science.2919285. [DOI] [PubMed] [Google Scholar]
  9. Isberg R. R., Falkow S. A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature. 1985 Sep 19;317(6034):262–264. doi: 10.1038/317262a0. [DOI] [PubMed] [Google Scholar]
  10. King C. H., Fields B. S., Shotts E. B., Jr, White E. H. Effects of cytochalasin D and methylamine on intracellular growth of Legionella pneumophila in amoebae and human monocyte-like cells. Infect Immun. 1991 Mar;59(3):758–763. doi: 10.1128/iai.59.3.758-763.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lesse A. J., Gheesling L. L., Bittner W. E., Myers S. D., Carlone G. M. Stable, conserved outer membrane epitope of strains of Haemophilus influenzae biogroup aegyptius associated with Brazilian purpuric fever. Infect Immun. 1992 Apr;60(4):1351–1357. doi: 10.1128/iai.60.4.1351-1357.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McIntyre P., Wheaton G., Erlich J., Hansman D. Brasilian purpuric fever in central Australia. Lancet. 1987 Jul 11;2(8550):112–112. doi: 10.1016/s0140-6736(87)92788-7. [DOI] [PubMed] [Google Scholar]
  13. Moulder J. W. Comparative biology of intracellular parasitism. Microbiol Rev. 1985 Sep;49(3):298–337. doi: 10.1128/mr.49.3.298-337.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peters V. B., Rubin L. G. Antibodies to lipooligosaccharide of a Brazilian purpuric fever isolate of Haemophilus influenzae biogroup aegyptius lack bactericidal and protective activity. Infect Immun. 1992 Aug;60(8):3423–3427. doi: 10.1128/iai.60.8.3423-3427.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Plaunt M. R., Hatch T. P. Protein synthesis early in the developmental cycle of Chlamydia psittaci. Infect Immun. 1988 Dec;56(12):3021–3025. doi: 10.1128/iai.56.12.3021-3025.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Quinn F. D., Weyant R. S., Candal F. J., Ades E. W. Destruction of human microvascular endothelial cell capillary-like microtubules by Brazilian purpuric fever-associated Haemophilus influenzae biogroup aegyptius. Pathobiology. 1994;62(2):109–112. doi: 10.1159/000163886. [DOI] [PubMed] [Google Scholar]
  17. Rubin L. G., Gloster E. S., Carlone G. M. An infant rat model of bacteremia with Brazilian purpuric fever isolates of Hemophilus influenzae biogroup aegyptius. Brazilian Purpuric Fever Study Group. J Infect Dis. 1989 Sep;160(3):476–482. doi: 10.1093/infdis/160.3.476. [DOI] [PubMed] [Google Scholar]
  18. Rubin L. G., Rizvi A. Antibody to a 145-kilodalton outer membrane protein has bactericidal activity and protective activity against experimental bacteremia caused by a Brazilian purpuric fever isolate of Haemophilus influenzae biogroup aegyptius. The Brazilian Purpuric Fever Study Group. Infect Immun. 1991 Dec;59(12):4576–4582. doi: 10.1128/iai.59.12.4576-4582.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. St Geme J. W., 3rd, Gilsdorf J. R., Falkow S. Surface structures and adherence properties of diverse strains of Haemophilus influenzae biogroup aegyptius. Infect Immun. 1991 Oct;59(10):3366–3371. doi: 10.1128/iai.59.10.3366-3371.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weyant R. S., Quinn F. D., Utt E. A., Worley M., George V. G., Candal F. J., Ades E. W. Human microvascular endothelial cell toxicity caused by Brazilian purpuric fever-associated strains of Haemophilus influenzae biogroup aegyptius. J Infect Dis. 1994 Feb;169(2):430–433. doi: 10.1093/infdis/169.2.430. [DOI] [PubMed] [Google Scholar]
  21. Wild B. E., Pearman J. W., Campbell P. B., Swan P. K., Garry D. L. Brazilian purpuric fever in Western Australia. Med J Aust. 1989 Mar 20;150(6):344–346. doi: 10.5694/j.1326-5377.1989.tb136503.x. [DOI] [PubMed] [Google Scholar]
  22. Xu Y., Swerlick R. A., Sepp N., Bosse D., Ades E. W., Lawley T. J. Characterization of expression and modulation of cell adhesion molecules on an immortalized human dermal microvascular endothelial cell line (HMEC-1). J Invest Dermatol. 1994 Jun;102(6):833–837. doi: 10.1111/1523-1747.ep12382086. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES