Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Infection and Immunity logoLink to Infection and Immunity
. 1995 Jun;63(6):2327–2333. doi: 10.1128/iai.63.6.2327-2333.1995

Affinity, conservation, and surface exposure of hemopexin-binding proteins in Haemophilus influenzae.

J C Wong 1, R Patel 1, D Kendall 1, P W Whitby 1, A Smith 1, J Holland 1, P Williams 1
PMCID: PMC173305  PMID: 7768617

Abstract

Haemophilus influenzae can acquire heme from hemopexin for use as a source of both essential porphyrin and iron. In classical ligand-binding studies, we observed time-dependent, saturable, and displaceable binding of human 125I-labelled hemopexin to intact cells of H. influenzae type b (Hib) strain 760705 grown in an iron-restricted medium. From these experiments, which demonstrate that hemopexin associates with a single class of binding site, the affinities (Kds) and receptor numbers were calculated for heme-hemopexin (Kd, 205 nM; 3,200 receptors per cell) and apohemopexin (Kd, 392 nM; 4,400 receptors per cell). Thus, Hib expresses a specific hemopexin receptor which shows some preference for the heme-protein complex. Affinity chromatography on hemopexin-Sepharose 4B of detergent-solubilized membranes from Hib strain 760705 results in the copurification of three proteins with molecular masses of 57, 38, and 29 kDa. Trypsinization of whole cells of Hib 760705 abolishes hemopexin binding and correlates with the disappearance of the 57-kDa hemopexin-binding protein and appearance of a 52-kDa species which does not bind either hemopexin in ligand blot assays or a monoclonal antibody (MAbT11-30) raised against the 57-kDa protein. From immunoblotting assays and NH2-terminal amino acid sequence analysis, the 38-kDa protein isolated following hemopexin affinity chromatography was identified as the porin protein P2. These data, taken together with the receptor-binding studies which support a single class of hemopexin-binding site, suggest that P2 and the 29-kDa protein function as accessory proteins to the 57-kDa hemopexin-binding protein to facilitate the uptake of heme from receptor-bound hemopexin. To determine whether hemopexin binding and the 57-kDa protein are conserved in Haemophilus strains, whole-cell dot blots and immunoblots of the outer membrane proteins prepared from strains belonging to each of 21 different Hib outer membrane protein subtypes, six nontypeable strains, and five Haemophilus parainfluenzae strains were probed with either hemopexin or MAbT11-30. Only the H. parainfluenzae strains which lack the 57-kDa protein do not bind hemopexin. Since H. influenzae has also been shown to produce a soluble 100-kDa hemopexin-binding protein, cell-free culture supernatants were also examined for the presence of this protein. Apart from Hib 760705 and H. parainfluenzae, the 100-kDa hemopexin-binding protein was detected in all the other Haemophilus strains. The abilities of Hib 760705 to both bind and acquire heme from hemopexin without expressing a 100-kDa soluble hemopexin-binding protein show that in strain 760705, this 100-kDa protein is not essential for the utilization of heme from hemopexin.

Full Text

The Full Text of this article is available as a PDF (682.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albritton W. L. Infections due to Haemophilus species other than H. influenzae. Annu Rev Microbiol. 1982;36:199–216. doi: 10.1146/annurev.mi.36.100182.001215. [DOI] [PubMed] [Google Scholar]
  2. Barenkamp S. J., Munson R. S., Jr, Granoff D. M. Subtyping isolates of Haemophilus influenzae type b by outer-membrane protein profiles. J Infect Dis. 1981 May;143(5):668–676. doi: 10.1093/infdis/143.5.668. [DOI] [PubMed] [Google Scholar]
  3. Cope L. D., Thomas S. E., Latimer J. L., Slaughter C. A., Müller-Eberhard U., Hansen E. J. The 100 kDa haem:haemopexin-binding protein of Haemophilus influenzae: structure and localization. Mol Microbiol. 1994 Sep;13(5):863–873. doi: 10.1111/j.1365-2958.1994.tb00478.x. [DOI] [PubMed] [Google Scholar]
  4. DeBlasi A., O'Reilly K., Motulsky H. J. Calculating receptor number from binding experiments using same compound as radioligand and competitor. Trends Pharmacol Sci. 1989 Jun;10(6):227–229. doi: 10.1016/0165-6147(89)90266-6. [DOI] [PubMed] [Google Scholar]
  5. Griffiths E. Iron and bacterial virulence--a brief overview. Biol Met. 1991;4(1):7–13. doi: 10.1007/BF01135551. [DOI] [PubMed] [Google Scholar]
  6. Hanson M. S., Pelzel S. E., Latimer J., Muller-Eberhard U., Hansen E. J. Identification of a genetic locus of Haemophilus influenzae type b necessary for the binding and utilization of heme bound to human hemopexin. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1973–1977. doi: 10.1073/pnas.89.5.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holland J., Langford P. R., Towner K. J., Williams P. Evidence for in vivo expression of transferrin-binding proteins in Haemophilus influenzae type b. Infect Immun. 1992 Jul;60(7):2986–2991. doi: 10.1128/iai.60.7.2986-2991.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jarosik G. P., Sanders J. D., Cope L. D., Muller-Eberhard U., Hansen E. J. A functional tonB gene is required for both utilization of heme and virulence expression by Haemophilus influenzae type b. Infect Immun. 1994 Jun;62(6):2470–2477. doi: 10.1128/iai.62.6.2470-2477.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Klebba P. E., Rutz J. M., Liu J., Murphy C. K. Mechanisms of TonB-catalyzed iron transport through the enteric bacterial cell envelope. J Bioenerg Biomembr. 1993 Dec;25(6):603–611. doi: 10.1007/BF00770247. [DOI] [PubMed] [Google Scholar]
  10. Lee B. C. Isolation of an outer membrane hemin-binding protein of Haemophilus influenzae type b. Infect Immun. 1992 Mar;60(3):810–816. doi: 10.1128/iai.60.3.810-816.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McConville M. L., Charles H. P. Mutants of Escherichia coli K12 permeable to haemin. J Gen Microbiol. 1979 Jul;113(1):165–168. doi: 10.1099/00221287-113-1-165. [DOI] [PubMed] [Google Scholar]
  12. Modun B., Kendall D., Williams P. Staphylococci express a receptor for human transferrin: identification of a 42-kilodalton cell wall transferrin-binding protein. Infect Immun. 1994 Sep;62(9):3850–3858. doi: 10.1128/iai.62.9.3850-3858.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morgan W. T., Muster P., Tatum F., Kao S. M., Alam J., Smith A. Identification of the histidine residues of hemopexin that coordinate with heme-iron and of a receptor-binding region. J Biol Chem. 1993 Mar 25;268(9):6256–6262. [PubMed] [Google Scholar]
  14. Morgan W. T., Smith A. Domain structure of rabbit hemopexin. Isolation and characterization of a heme-binding glycopeptide. J Biol Chem. 1984 Oct 10;259(19):12001–12006. [PubMed] [Google Scholar]
  15. Morton D. J., Williams P. Siderophore-independent acquisition of transferrin-bound iron by Haemophilus influenzae type b. J Gen Microbiol. 1990 May;136(5):927–933. doi: 10.1099/00221287-136-5-927. [DOI] [PubMed] [Google Scholar]
  16. Morton D. J., Williams P. Utilization of transferrin-bound iron by Haemophilus species of human and porcine origins. FEMS Microbiol Lett. 1989 Nov;53(1-2):123–127. doi: 10.1016/0378-1097(89)90378-9. [DOI] [PubMed] [Google Scholar]
  17. Munson R., Jr, Bailey C., Grass S. Diversity of the outer membrane protein P2 gene from major clones of Haemophilus influenzae type b. Mol Microbiol. 1989 Dec;3(12):1797–1803. doi: 10.1111/j.1365-2958.1989.tb00165.x. [DOI] [PubMed] [Google Scholar]
  18. Nikaido H. Porins and specific channels of bacterial outer membranes. Mol Microbiol. 1992 Feb;6(4):435–442. doi: 10.1111/j.1365-2958.1992.tb01487.x. [DOI] [PubMed] [Google Scholar]
  19. Pidcock K. A., Wooten J. A., Daley B. A., Stull T. L. Iron acquisition by Haemophilus influenzae. Infect Immun. 1988 Apr;56(4):721–725. doi: 10.1128/iai.56.4.721-725.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Postle K. TonB protein and energy transduction between membranes. J Bioenerg Biomembr. 1993 Dec;25(6):591–601. doi: 10.1007/BF00770246. [DOI] [PubMed] [Google Scholar]
  21. Smith A., Hunt R. C. Hemopexin joins transferrin as representative members of a distinct class of receptor-mediated endocytic transport systems. Eur J Cell Biol. 1990 Dec;53(2):234–245. [PubMed] [Google Scholar]
  22. Smith A., Ledford B. E. Expression of the haemopexin-transport system in cultured mouse hepatoma cells. Links between haemopexin and iron metabolism. Biochem J. 1988 Dec 15;256(3):941–950. doi: 10.1042/bj2560941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith A., Morgan W. T. Hemopexin-mediated heme transport to the liver. Evidence for a heme-binding protein in liver plasma membranes. J Biol Chem. 1985 Jul 15;260(14):8325–8329. [PubMed] [Google Scholar]
  24. Smith A., Tatum F. M., Muster P., Burch M. K., Morgan W. T. Importance of ligand-induced conformational changes in hemopexin for receptor-mediated heme transport. J Biol Chem. 1988 Apr 15;263(11):5224–5229. [PubMed] [Google Scholar]
  25. Stevenson P., Williams P., Griffiths E. Common antigenic domains in transferrin-binding protein 2 of Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae type b. Infect Immun. 1992 Jun;60(6):2391–2396. doi: 10.1128/iai.60.6.2391-2396.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stull T. L. Protein sources of heme for Haemophilus influenzae. Infect Immun. 1987 Jan;55(1):148–153. doi: 10.1128/iai.55.1.148-153.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Săsărman A., Sanderson K. E., Surdeanu M., Sonea S. Hemin-deficient mutants of Salmonella typhimurium. J Bacteriol. 1970 May;102(2):531–536. doi: 10.1128/jb.102.2.531-536.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taketani S., Kohno H., Naitoh Y., Tokunaga R. Isolation of the hemopexin receptor from human placenta. J Biol Chem. 1987 Jun 25;262(18):8668–8671. [PubMed] [Google Scholar]
  29. Taketani S., Kohno H., Tokunaga R. Cell surface receptor for hemopexin in human leukemia HL60 cells. Specific binding, affinity labeling, and fate of heme. J Biol Chem. 1987 Apr 5;262(10):4639–4643. [PubMed] [Google Scholar]
  30. Taketani S., Kohno H., Tokunaga R. Receptor-mediated heme uptake from hemopexin by human erythroleukemia K562 cells. Biochem Int. 1986 Aug;13(2):307–312. [PubMed] [Google Scholar]
  31. Tsai J., Dyer D. W., Sparling P. F. Loss of transferrin receptor activity in Neisseria meningitidis correlates with inability to use transferrin as an iron source. Infect Immun. 1988 Dec;56(12):3132–3138. doi: 10.1128/iai.56.12.3132-3138.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Turk D. C. The pathogenicity of Haemophilus influenzae. J Med Microbiol. 1984 Aug;18(1):1–16. doi: 10.1099/00222615-18-1-1. [DOI] [PubMed] [Google Scholar]
  33. Vachon V., Lyew D. J., Coulton J. W. Transmembrane permeability channels across the outer membrane of Haemophilus influenzae type b. J Bacteriol. 1985 Jun;162(3):918–924. doi: 10.1128/jb.162.3.918-924.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vretblad P., Hjorth R. The use of wheat-germ lectin-Sepharose for the purification of human haemopexin. Biochem J. 1977 Dec 1;167(3):759–764. doi: 10.1042/bj1670759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. WHITE D. C., GRANICK S. HEMIN BIOSYNTHESIS IN HAEMOPHILUS. J Bacteriol. 1963 Apr;85:842–850. doi: 10.1128/jb.85.4.842-850.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Williams P., Griffiths E. Bacterial transferrin receptors--structure, function and contribution to virulence. Med Microbiol Immunol. 1992;181(6):301–322. doi: 10.1007/BF00191543. [DOI] [PubMed] [Google Scholar]
  37. Williams P., Morton D. J., Towner K. J., Stevenson P., Griffiths E. Utilization of enterobactin and other exogenous iron sources by Haemophilus influenzae, H. parainfluenzae and H. paraphrophilus. J Gen Microbiol. 1990 Dec;136(12):2343–2350. doi: 10.1099/00221287-136-12-2343. [DOI] [PubMed] [Google Scholar]
  38. Wong J. C., Holland J., Parsons T., Smith A., Williams P. Identification and characterization of an iron-regulated hemopexin receptor in Haemophilus influenzae type b. Infect Immun. 1994 Jan;62(1):48–59. doi: 10.1128/iai.62.1.48-59.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wooldridge K. G., Williams P. H. Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev. 1993 Nov;12(4):325–348. doi: 10.1111/j.1574-6976.1993.tb00026.x. [DOI] [PubMed] [Google Scholar]
  40. Wu M. L., Morgan W. T. Characterization of hemopexin and its interaction with heme by differential scanning calorimetry and circular dichroism. Biochemistry. 1993 Jul 20;32(28):7216–7222. doi: 10.1021/bi00079a018. [DOI] [PubMed] [Google Scholar]
  41. Wu M. L., Morgan W. T. Conformational analysis of hemopexin by Fourier-transform infrared and circular dichroism spectroscopy. Proteins. 1994 Oct;20(2):185–190. doi: 10.1002/prot.340200208. [DOI] [PubMed] [Google Scholar]
  42. Young S. P., Bomford A., Williams R. The effect of the iron saturation of transferrin on its binding and uptake by rabbit reticulocytes. Biochem J. 1984 Apr 15;219(2):505–510. doi: 10.1042/bj2190505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. van Alphen L., Riemens T., Poolman J., Hopman C., Zanen H. C. Homogeneity of cell envelope protein subtypes, lipopolysaccharide serotypes, and biotypes among Haemophilus influenzae type b from patients with meningitis in The Netherlands. J Infect Dis. 1983 Jul;148(1):75–81. doi: 10.1093/infdis/148.1.75. [DOI] [PubMed] [Google Scholar]
  44. van Alphen L., Riemens T., Poolman J., Zanen H. C. Characteristics of major outer membrane proteins of Haemophilus influenzae. J Bacteriol. 1983 Aug;155(2):878–885. doi: 10.1128/jb.155.2.878-885.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES