Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jul;63(7):2396–2402. doi: 10.1128/iai.63.7.2396-2402.1995

Intracellular processing of liposome-encapsulated antigens by macrophages depends upon the antigen.

M Rao 1, N M Wassef 1, C R Alving 1, U Krzych 1
PMCID: PMC173320  PMID: 7790049

Abstract

Two proteins, a recombinant malaria protein (R32NS1) and conalbumin, were encapsulated in separate liposomes. The mechanisms of presentation of unencapsulated and liposome-encapsulated R32NS1 and conalbumin to antigen-specific T-cell clones were investigated in in vitro antigen presentation assays using murine bone marrow-derived macrophages (BMs) as antigen-presenting cells. A much lower concentration of liposomal antigen than of unencapsulated antigen was required for T-cell proliferation. Liposome-encapsulated conalbumin required intracellular processing by BMs for antigen-specific T-cell proliferation, as determined by inhibition with chloroquine, NH4Cl, leupeptin, brefeldin A, monensin, antimycin A, NaF, and cycloheximide and by treatment of BMs with glutaraldehyde. Liposome-encapsulated conalbumin therefore follows the classical intracellular antigen processing pathway described for protein antigens. Similarly, unencapsulated conalbumin also required intracellular processing for presentation to antigen-specific T cells. In contrast, both unencapsulated R32NS1 and liposome-encapsulated R32NS1 were presented to T cells by BMs without undergoing internalization and intracellular processing. These results suggest that the antigen itself is the major element that determines whether a requirement exists for intracellular processing of liposomal antigens by macrophages.

Full Text

The Full Text of this article is available as a PDF (246.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. M., Austin G. A., Chonn A., Lin L., Lee K. C. Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim Biophys Acta. 1991 Jan 9;1061(1):56–64. doi: 10.1016/0005-2736(91)90268-d. [DOI] [PubMed] [Google Scholar]
  2. Alving C. R., Kinsky S. C. The preparation and properties of liposomes in the LA and LAC states. Immunochemistry. 1971 Apr;8(4):325–343. doi: 10.1016/0019-2791(71)90155-8. [DOI] [PubMed] [Google Scholar]
  3. Bakouche O., Lachman L. B. Antigen presentation by liposomes bearing class II MHC and membrane IL-1. Yale J Biol Med. 1990 Mar-Apr;63(2):95–107. [PMC free article] [PubMed] [Google Scholar]
  4. Bakouche O., Lachman L. B. Synthetic macrophages: antigen presentation by liposomes bearing class II major histocompatibility complex (MHC) and membrane interleukin-1 (IL-1). J Clin Immunol. 1989 Sep;9(5):369–377. doi: 10.1007/BF00917101. [DOI] [PubMed] [Google Scholar]
  5. Bakouche O., Lachman L. B. Synthetic macrophages: liposomes bearing antigen, class II MHC and membrane-IL-1. Lymphokine Res. 1990 Fall;9(3):259–281. [PubMed] [Google Scholar]
  6. Belosevic M., Davis C. E., Meltzer M. S., Nacy C. A. Regulation of activated macrophage antimicrobial activities. Identification of lymphokines that cooperate with IFN-gamma for induction of resistance to infection. J Immunol. 1988 Aug 1;141(3):890–896. [PubMed] [Google Scholar]
  7. Dal Monte P. R., Szoka F. C., Jr Antigen presentation by B cells and macrophages of cytochrome c and its antigenic fragment when conjugated to the surface of liposomes. Vaccine. 1989 Oct;7(5):401–408. doi: 10.1016/0264-410x(89)90153-9. [DOI] [PubMed] [Google Scholar]
  8. Dal Monte P., Szoka F. C., Jr Effect of liposome encapsulation on antigen presentation in vitro. Comparison of presentation by peritoneal macrophages and B cell tumors. J Immunol. 1989 Mar 1;142(5):1437–1443. [PubMed] [Google Scholar]
  9. Fleischer B., Schrezenmeier H. T cell stimulation by staphylococcal enterotoxins. Clonally variable response and requirement for major histocompatibility complex class II molecules on accessory or target cells. J Exp Med. 1988 May 1;167(5):1697–1707. doi: 10.1084/jem.167.5.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fries L. F., Gordon D. M., Richards R. L., Egan J. E., Hollingdale M. R., Gross M., Silverman C., Alving C. R. Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):358–362. doi: 10.1073/pnas.89.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harding C. V., Collins D. S., Slot J. W., Geuze H. J., Unanue E. R. Liposome-encapsulated antigens are processed in lysosomes, recycled, and presented to T cells. Cell. 1991 Jan 25;64(2):393–401. doi: 10.1016/0092-8674(91)90647-h. [DOI] [PubMed] [Google Scholar]
  12. Harding C. V., Leyva-Cobian F., Unanue E. R. Mechanisms of antigen processing. Immunol Rev. 1988 Dec;106:77–92. doi: 10.1111/j.1600-065x.1988.tb00774.x. [DOI] [PubMed] [Google Scholar]
  13. Kaye J., Porcelli S., Tite J., Jones B., Janeway C. A., Jr Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells. J Exp Med. 1983 Sep 1;158(3):836–856. doi: 10.1084/jem.158.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lee P., Matsueda G. R., Allen P. M. T cell recognition of fibrinogen. A determinant on the A alpha-chain does not require processing. J Immunol. 1988 Feb 15;140(4):1063–1068. [PubMed] [Google Scholar]
  16. Link H. T., White K., Krzych U. Plasmodium berghei-specific T cells respond to non-processed sporozoites presented by B cells. Eur J Immunol. 1993 Sep;23(9):2263–2269. doi: 10.1002/eji.1830230932. [DOI] [PubMed] [Google Scholar]
  17. Pagano R. E., Sepanski M. A., Martin O. C. Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. J Cell Biol. 1989 Nov;109(5):2067–2079. doi: 10.1083/jcb.109.5.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Togna A. R., Del Giudice G., Verdini A. S., Bonelli F., Pessi A., Engers H. D., Corradin G. Synthetic Plasmodium falciparum circumsporozoite peptides elicit heterogenous L3T4+ T cell proliferative responses in H-2b mice. J Immunol. 1986 Nov 1;137(9):2956–2960. [PubMed] [Google Scholar]
  19. Trizio D., Cudkowicz G. Separation of T and B lymphocytes by nylon wool columns: evaluation of efficacy by functional assays in vivo. J Immunol. 1974 Oct;113(4):1093–1097. [PubMed] [Google Scholar]
  20. Verma J. N., Rao M., Amselem S., Krzych U., Alving C. R., Green S. J., Wassef N. M. Adjuvant effects of liposomes containing lipid A: enhancement of liposomal antigen presentation and recruitment of macrophages. Infect Immun. 1992 Jun;60(6):2438–2444. doi: 10.1128/iai.60.6.2438-2444.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Verma J. N., Wassef N. M., Wirtz R. A., Atkinson C. T., Aikawa M., Loomis L. D., Alving C. R. Phagocytosis of liposomes by macrophages: intracellular fate of liposomal malaria antigen. Biochim Biophys Acta. 1991 Jul 22;1066(2):229–238. doi: 10.1016/0005-2736(91)90191-a. [DOI] [PubMed] [Google Scholar]
  22. Walden P. Antigen presentation by liposomes as model system for T-B cell interaction. Eur J Immunol. 1988 Nov;18(11):1851–1854. doi: 10.1002/eji.1830181132. [DOI] [PubMed] [Google Scholar]
  23. Walden P., Nagy Z. A., Klein J. Induction of regulatory T-lymphocyte responses by liposomes carrying major histocompatibility complex molecules and foreign antigen. Nature. 1985 May 23;315(6017):327–329. doi: 10.1038/315327a0. [DOI] [PubMed] [Google Scholar]
  24. Watts T. H., Brian A. A., Kappler J. W., Marrack P., McConnell H. M. Antigen presentation by supported planar membranes containing affinity-purified I-Ad. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7564–7568. doi: 10.1073/pnas.81.23.7564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
  26. Young J. F., Desselberger U., Palese P., Ferguson B., Shatzman A. R., Rosenberg M. Efficient expression of influenza virus NS1 nonstructural proteins in Escherichia coli. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6105–6109. doi: 10.1073/pnas.80.19.6105. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES