Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jul;63(7):2473–2477. doi: 10.1128/iai.63.7.2473-2477.1995

Expression of adhesion molecules on human granulocytes after stimulation with Helicobacter pylori membrane proteins: comparison with membrane proteins from other bacteria.

G Enders 1, W Brooks 1, N von Jan 1, N Lehn 1, E Bayerdörffer 1, R Hatz 1
PMCID: PMC173330  PMID: 7540595

Abstract

Type B gastritis in its active form is characterized by a dense infiltration of the lamina propria with granulocytes. Since the bacterium Helicobacter pylori does not invade the epithelial barrier, a signaling pathway chemoattractive for granulocytes must exist across this mucosal boarder. One possible mechanism tested was whether granulocytes are directly activated by water-soluble membrane proteins (WSP) from H. pylori. These findings were compared with the effects of WSP from other bacteria (Helicobacter felis, Campylobacter jejuni, Escherichia coli, and Staphylococcus aureus). A unique activation pattern by H. pylori WSP was found. Like all other WSP tested, they induced an upregulation of CD11b but had no influence on CD11c and, most strikingly, CD62L expression. In contrast, E. coli WSP, e.g., not only induce a strong CD11b and CD11c expression but also lead to a loss in surface CD62L. The lack of CD62L shedding conserves rolling of granulocytes along the endothelium, creating a favorable precondition for granulocytes to stick more readily to activated endothelium after H. pylori stimulation via CD11b-CD54 receptor-counterreceptor interaction. This may explain why H. pylori infection is a very strong stimulus for granulocyte infiltration. The active fraction for the induction of CD11b on granulocytes is a heat- and protease-sensitive protein with a molecular mass between 30 and 100 kDa. One activation step involved may be the binding of WSP to CD15 determinants on granulocytes with subsequent induction of CD11b.

Full Text

The Full Text of this article is available as a PDF (225.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen L. P., Blom J., Nielsen H. Survival and ultrastructural changes of Helicobacter pylori after phagocytosis by human polymorphonuclear leukocytes and monocytes. APMIS. 1993 Jan;101(1):61–72. [PubMed] [Google Scholar]
  2. Blaser M. J. Hypotheses on the pathogenesis and natural history of Helicobacter pylori-induced inflammation. Gastroenterology. 1992 Feb;102(2):720–727. doi: 10.1016/0016-5085(92)90126-j. [DOI] [PubMed] [Google Scholar]
  3. Borén T., Falk P., Roth K. A., Larson G., Normark S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science. 1993 Dec 17;262(5141):1892–1895. doi: 10.1126/science.8018146. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Bär W., Glenn-Calvo E., Krausse R. Phagocytosis of enteric Campylobacter by human and murine granulocytes. FEMS Microbiol Immunol. 1991 Jun;3(3):143–149. doi: 10.1111/j.1574-6968.1991.tb04207.x. [DOI] [PubMed] [Google Scholar]
  6. Caselli M., Figura N., Trevisani L., Pazzi P., Guglielmetti P., Bovolenta M. R., Stabellini G. Patterns of physical modes of contact between Campylobacter pylori and gastric epithelium: implications about the bacterial pathogenicity. Am J Gastroenterol. 1989 May;84(5):511–513. [PubMed] [Google Scholar]
  7. Crabtree J. E., Wyatt J. I., Trejdosiewicz L. K., Peichl P., Nichols P. H., Ramsay N., Primrose J. N., Lindley I. J. Interleukin-8 expression in Helicobacter pylori infected, normal, and neoplastic gastroduodenal mucosa. J Clin Pathol. 1994 Jan;47(1):61–66. doi: 10.1136/jcp.47.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Craig P. M., Territo M. C., Karnes W. E., Walsh J. H. Helicobacter pylori secretes a chemotactic factor for monocytes and neutrophils. Gut. 1992 Aug;33(8):1020–1023. doi: 10.1136/gut.33.8.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gbarah A., Gahmberg C. G., Boner G., Sharon N. The leukocyte surface antigens CD11b and CD18 mediate the oxidative burst activation of human peritoneal macrophages induced by type 1 fimbriated Escherichia coli. J Leukoc Biol. 1993 Aug;54(2):111–113. doi: 10.1002/jlb.54.2.111. [DOI] [PubMed] [Google Scholar]
  10. Gbarah A., Gahmberg C. G., Ofek I., Jacobi U., Sharon N. Identification of the leukocyte adhesion molecules CD11 and CD18 as receptors for type 1-fimbriated (mannose-specific) Escherichia coli. Infect Immun. 1991 Dec;59(12):4524–4530. doi: 10.1128/iai.59.12.4524-4530.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Griffin J. D., Spertini O., Ernst T. J., Belvin M. P., Levine H. B., Kanakura Y., Tedder T. F. Granulocyte-macrophage colony-stimulating factor and other cytokines regulate surface expression of the leukocyte adhesion molecule-1 on human neutrophils, monocytes, and their precursors. J Immunol. 1990 Jul 15;145(2):576–584. [PubMed] [Google Scholar]
  12. Hessey S. J., Spencer J., Wyatt J. I., Sobala G., Rathbone B. J., Axon A. T., Dixon M. F. Bacterial adhesion and disease activity in Helicobacter associated chronic gastritis. Gut. 1990 Feb;31(2):134–138. doi: 10.1136/gut.31.2.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kerr M. A., Stocks S. C. The role of CD15-(Le(X))-related carbohydrates in neutrophil adhesion. Histochem J. 1992 Nov;24(11):811–826. doi: 10.1007/BF01046353. [DOI] [PubMed] [Google Scholar]
  14. Kishimoto T. K., Jutila M. A., Berg E. L., Butcher E. C. Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science. 1989 Sep 15;245(4923):1238–1241. doi: 10.1126/science.2551036. [DOI] [PubMed] [Google Scholar]
  15. Lawrence M. B., Springer T. A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991 May 31;65(5):859–873. doi: 10.1016/0092-8674(91)90393-d. [DOI] [PubMed] [Google Scholar]
  16. Lund-Johansen F., Olweus J., Horejsi V., Skubitz K. M., Thompson J. S., Vilella R., Symington F. W. Activation of human phagocytes through carbohydrate antigens (CD15, sialyl-CD15, CDw17, and CDw65). J Immunol. 1992 May 15;148(10):3221–3229. [PubMed] [Google Scholar]
  17. Mai U. E., Perez-Perez G. I., Allen J. B., Wahl S. M., Blaser M. J., Smith P. D. Surface proteins from Helicobacter pylori exhibit chemotactic activity for human leukocytes and are present in gastric mucosa. J Exp Med. 1992 Feb 1;175(2):517–525. doi: 10.1084/jem.175.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mai U. E., Perez-Perez G. I., Wahl L. M., Wahl S. M., Blaser M. J., Smith P. D. Soluble surface proteins from Helicobacter pylori activate monocytes/macrophages by lipopolysaccharide-independent mechanism. J Clin Invest. 1991 Mar;87(3):894–900. doi: 10.1172/JCI115095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Marchant A., Duchow J., Goldman M. Adhesion molecules in antibacterial defenses: effects of bacterial extracts. Respiration. 1992;59 (Suppl 3):24–27. doi: 10.1159/000196127. [DOI] [PubMed] [Google Scholar]
  20. Nielsen H., Andersen L. P. Chemotactic activity of Helicobacter pylori sonicate for human polymorphonuclear leucocytes and monocytes. Gut. 1992 Jun;33(6):738–742. doi: 10.1136/gut.33.6.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nielsen H., Birkholz S., Andersen L. P., Moran A. P. Neutrophil activation by Helicobacter pylori lipopolysaccharides. J Infect Dis. 1994 Jul;170(1):135–139. doi: 10.1093/infdis/170.1.135. [DOI] [PubMed] [Google Scholar]
  22. Relman D., Tuomanen E., Falkow S., Golenbock D. T., Saukkonen K., Wright S. D. Recognition of a bacterial adhesion by an integrin: macrophage CR3 (alpha M beta 2, CD11b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell. 1990 Jun 29;61(7):1375–1382. doi: 10.1016/0092-8674(90)90701-f. [DOI] [PubMed] [Google Scholar]
  23. Ross G. D., Vetvicka V. CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multiple ligand specificities and functions. Clin Exp Immunol. 1993 May;92(2):181–184. doi: 10.1111/j.1365-2249.1993.tb03377.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sauter S. L., Rutherfurd S. M., Wagener C., Shively J. E., Hefta S. A. Identification of the specific oligosaccharide sites recognized by type 1 fimbriae from Escherichia coli on nonspecific cross-reacting antigen, a CD66 cluster granulocyte glycoprotein. J Biol Chem. 1993 Jul 25;268(21):15510–15516. [PubMed] [Google Scholar]
  25. Spiegelhalder C., Gerstenecker B., Kersten A., Schiltz E., Kist M. Purification of Helicobacter pylori superoxide dismutase and cloning and sequencing of the gene. Infect Immun. 1993 Dec;61(12):5315–5325. doi: 10.1128/iai.61.12.5315-5325.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
  27. Stocks S. C., Albrechtsen M., Kerr M. A. Expression of the CD15 differentiation antigen (3-fucosyl-N-acetyl-lactosamine, LeX) on putative neutrophil adhesion molecules CR3 and NCA-160. Biochem J. 1990 Jun 1;268(2):275–280. doi: 10.1042/bj2680275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stöckl J., Majdic O., Rosenkranz A., Fiebiger E., Kniep B., Stockinger H., Knapp W. Monoclonal antibodies to the carbohydrate structure Lewis(x) stimulate the adhesive activity of leukocyte integrin CD11b/CD18 (CR3, Mac-1, alpha m beta 2) on human granulocytes. J Leukoc Biol. 1993 May;53(5):541–549. doi: 10.1002/jlb.53.5.541. [DOI] [PubMed] [Google Scholar]
  29. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet. 1983 Jun 4;1(8336):1273–1275. [PubMed] [Google Scholar]
  30. Wright S. D., Jong M. T. Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide. J Exp Med. 1986 Dec 1;164(6):1876–1888. doi: 10.1084/jem.164.6.1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yoshida N., Granger D. N., Evans D. J., Jr, Evans D. G., Graham D. Y., Anderson D. C., Wolf R. E., Kvietys P. R. Mechanisms involved in Helicobacter pylori-induced inflammation. Gastroenterology. 1993 Nov;105(5):1431–1440. doi: 10.1016/0016-5085(93)90148-6. [DOI] [PubMed] [Google Scholar]
  32. Zimmerman G. A., Prescott S. M., McIntyre T. M. Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today. 1992 Mar;13(3):93–100. doi: 10.1016/0167-5699(92)90149-2. [DOI] [PubMed] [Google Scholar]
  33. von Andrian U. H., Chambers J. D., McEvoy L. M., Bargatze R. F., Arfors K. E., Butcher E. C. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7538–7542. doi: 10.1073/pnas.88.17.7538. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES