Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jul;63(7):2485–2492. doi: 10.1128/iai.63.7.2485-2492.1995

Binding of Haemophilus influenzae to purified mucins from the human respiratory tract.

J Davies 1, I Carlstedt 1, A K Nilsson 1, A Håkansson 1, H Sabharwal 1, L van Alphen 1, M van Ham 1, C Svanborg 1
PMCID: PMC173332  PMID: 7790060

Abstract

Mucins are high-molecular-weight glycoproteins and major constituents of the mucus layer which covers the airway surface. We have studied the interactions between bacteria, mucins, and epithelial cells from the human respiratory tract. Nontypeable strains of Haemophilus influenzae were found to bind to purified airway mucins in suspension and on solid phase. Mucins in suspension inhibited the attachment of these strains to nasopharyngeal epithelial cells, while mucin coating of the cells enhanced their binding. In contrast, strains of Streptococcus pneumoniae and encapsulated and other nontypeable H. influenzae strains failed to interact with mucins. These H. influenzae strains used other strategies for adherence to epithelial cells. The type b strain 770235 attached via fimbriae but also expressed a subcapsular adhesin that was detected in a capsule- and fimbria-defective mutant. Mucin pretreatment of these bacteria did not inhibit adherence, but mucin pretreatment of epithelial cells inhibited adherence, probably by shielding of the receptors for these adhesins. Non-mucin-binding nontypeable and encapsulated H. influenzae strains would, therefore, adhere only after disruption of the mucus layer and exposure of cellular receptors. Differences in tissue toxicity and invasiveness among H. influenzae strains may also be influenced by the mucin interactions of the strains.

Full Text

The Full Text of this article is available as a PDF (439.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson B., Dahmén J., Frejd T., Leffler H., Magnusson G., Noori G., Edén C. S. Identification of an active disaccharide unit of a glycoconjugate receptor for pneumococci attaching to human pharyngeal epithelial cells. J Exp Med. 1983 Aug 1;158(2):559–570. doi: 10.1084/jem.158.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson B., Eriksson B., Falsen E., Fogh A., Hanson L. A., Nylén O., Peterson H., Svanborg Edén C. Adhesion of Streptococcus pneumoniae to human pharyngeal epithelial cells in vitro: differences in adhesive capacity among strains isolated from subjects with otitis media, septicemia, or meningitis or from healthy carriers. Infect Immun. 1981 Apr;32(1):311–317. doi: 10.1128/iai.32.1.311-317.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersson B., Gray B. M., Dillon H. C., Jr, Bahrmand A., Edén C. S. Role of adherence of Streptococcus pneumoniae in acute otitis media. Pediatr Infect Dis J. 1988 Jul;7(7):476–480. doi: 10.1097/00006454-198807000-00005. [DOI] [PubMed] [Google Scholar]
  4. Aniansson G., Alm B., Andersson B., Larsson P., Nylén O., Peterson H., Rignér P., Svanborg M., Svanborg C. Nasopharyngeal colonization during the first year of life. J Infect Dis. 1992 Jun;165 (Suppl 1):S38–S42. doi: 10.1093/infdis/165-supplement_1-s38. [DOI] [PubMed] [Google Scholar]
  5. Bakaletz L. O., Tallan B. M., Hoepf T., DeMaria T. F., Birck H. G., Lim D. J. Frequency of fimbriation of nontypable Haemophilus influenzae and its ability to adhere to chinchilla and human respiratory epithelium. Infect Immun. 1988 Feb;56(2):331–335. doi: 10.1128/iai.56.2.331-335.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barenkamp S. J., Leininger E. Cloning, expression, and DNA sequence analysis of genes encoding nontypeable Haemophilus influenzae high-molecular-weight surface-exposed proteins related to filamentous hemagglutinin of Bordetella pertussis. Infect Immun. 1992 Apr;60(4):1302–1313. doi: 10.1128/iai.60.4.1302-1313.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Branefors-Helander P. Antigen-free medium for cultivation of Haemophilus influenzae, AFH-medium. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(2):211–220. doi: 10.1111/j.1699-0463.1972.tb00151.x. [DOI] [PubMed] [Google Scholar]
  8. Carnoy C., Ramphal R., Scharfman A., Lo-Guidice J. M., Houdret N., Klein A., Galabert C., Lamblin G., Roussel P. Altered carbohydrate composition of salivary mucins from patients with cystic fibrosis and the adhesion of Pseudomonas aeruginosa. Am J Respir Cell Mol Biol. 1993 Sep;9(3):323–334. doi: 10.1165/ajrcmb/9.3.323. [DOI] [PubMed] [Google Scholar]
  9. Gray B. M., Dillon H. C., Jr Clinical and epidemiologic studies of pneumococcal infection in children. Pediatr Infect Dis. 1986 Mar-Apr;5(2):201–207. doi: 10.1097/00006454-198603000-00009. [DOI] [PubMed] [Google Scholar]
  10. Höltje J. V., Tomasz A. Lipoteichoic acid: a specific inhibitor of autolysin activity in Pneumococcus. Proc Natl Acad Sci U S A. 1975 May;72(5):1690–1694. doi: 10.1073/pnas.72.5.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jourdian G. W., Dean L., Roseman S. The sialic acids. XI. A periodate-resorcinol method for the quantitative estimation of free sialic acids and their glycosides. J Biol Chem. 1971 Jan 25;246(2):430–435. [PubMed] [Google Scholar]
  12. Krivan H. C., Roberts D. D., Ginsburg V. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6157–6161. doi: 10.1073/pnas.85.16.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lamblin G., Lhermitte M., Klein A., Houdret N., Scharfman A., Ramphal R., Roussel P. The carbohydrate diversity of human respiratory mucins: a protection of the underlying mucosa? Am Rev Respir Dis. 1991 Sep;144(3 Pt 2):S19–S24. doi: 10.1164/ajrccm/144.3_pt_2.S19. [DOI] [PubMed] [Google Scholar]
  14. Lindahl M., Carlstedt I. Binding of K99 fimbriae of enterotoxigenic Escherichia coli to pig small intestinal mucin glycopeptides. J Gen Microbiol. 1990 Aug;136(8):1609–1614. doi: 10.1099/00221287-136-8-1609. [DOI] [PubMed] [Google Scholar]
  15. Plotkowski M. C., Beck G., Jacquot J., Puchelle E. The frog palate mucosa as a model for studying bacterial adhesion to mucus-coated respiratory epithelium. J Comp Pathol. 1989 Jan;100(1):37–46. doi: 10.1016/0021-9975(89)90088-1. [DOI] [PubMed] [Google Scholar]
  16. Porras O., Dillon H. C., Jr, Gray B. M., Svanborg-Edén C. Lack of correlation of in vitro adherence of Haemophilus influenzae to epithelial cells with frequent occurrence of otitis media. Pediatr Infect Dis J. 1987 Jan;6(1):41–45. doi: 10.1097/00006454-198701000-00011. [DOI] [PubMed] [Google Scholar]
  17. Porras O., Svanborg-Edén C., Lagergård T., Hanson L. A. Method for testing adherence of Haemophilus influenzae to human buccal epithelial cells. Eur J Clin Microbiol. 1985 Jun;4(3):310–315. doi: 10.1007/BF02013659. [DOI] [PubMed] [Google Scholar]
  18. Ramphal R., Carnoy C., Fievre S., Michalski J. C., Houdret N., Lamblin G., Strecker G., Roussel P. Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal beta 1-3GlcNAc) or type 2 (Gal beta 1-4GlcNAc) disaccharide units. Infect Immun. 1991 Feb;59(2):700–704. doi: 10.1128/iai.59.2.700-704.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Read R. C., Wilson R., Rutman A., Lund V., Todd H. C., Brain A. P., Jeffery P. K., Cole P. J. Interaction of nontypable Haemophilus influenzae with human respiratory mucosa in vitro. J Infect Dis. 1991 Mar;163(3):549–558. doi: 10.1093/infdis/163.3.549. [DOI] [PubMed] [Google Scholar]
  20. Sajjan U. S., Corey M., Karmali M. A., Forstner J. F. Binding of Pseudomonas cepacia to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. J Clin Invest. 1992 Feb;89(2):648–656. doi: 10.1172/JCI115631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sheehan J. K., Thornton D. J., Somerville M., Carlstedt I. Mucin structure. The structure and heterogeneity of respiratory mucus glycoproteins. Am Rev Respir Dis. 1991 Sep;144(3 Pt 2):S4–S9. doi: 10.1164/ajrccm/144.3_pt_2.S4. [DOI] [PubMed] [Google Scholar]
  22. St Geme J. W., 3rd, Falkow S., Barenkamp S. J. High-molecular-weight proteins of nontypable Haemophilus influenzae mediate attachment to human epithelial cells. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2875–2879. doi: 10.1073/pnas.90.7.2875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thornton D. J., Davies J. R., Kraayenbrink M., Richardson P. S., Sheehan J. K., Carlstedt I. Mucus glycoproteins from 'normal' human tracheobronchial secretion. Biochem J. 1990 Jan 1;265(1):179–186. doi: 10.1042/bj2650179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thornton D. J., Holmes D. F., Sheehan J. K., Carlstedt I. Quantitation of mucus glycoproteins blotted onto nitrocellulose membranes. Anal Biochem. 1989 Oct;182(1):160–164. doi: 10.1016/0003-2697(89)90735-5. [DOI] [PubMed] [Google Scholar]
  25. Vishwanath S., Ramphal R. Adherence of Pseudomonas aeruginosa to human tracheobronchial mucin. Infect Immun. 1984 Jul;45(1):197–202. doi: 10.1128/iai.45.1.197-202.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. van Alphen L., van den Berghe N., Geelen-van den Broek L. Interaction of Haemophilus influenzae with human erythrocytes and oropharyngeal epithelial cells is mediated by a common fimbrial epitope. Infect Immun. 1988 Jul;56(7):1800–1806. doi: 10.1128/iai.56.7.1800-1806.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van Ham S. M., Mooi F. R., Sindhunata M. G., Maris W. R., van Alphen L. Cloning and expression in Escherichia coli of Haemophilus influenzae fimbrial genes establishes adherence to oropharyngeal epithelial cells. EMBO J. 1989 Nov;8(11):3535–3540. doi: 10.1002/j.1460-2075.1989.tb08519.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. van Ham S. M., van Alphen L., Mooi F. R., van Putten J. P. The fimbrial gene cluster of Haemophilus influenzae type b. Mol Microbiol. 1994 Aug;13(4):673–684. doi: 10.1111/j.1365-2958.1994.tb00461.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES