Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jul;63(7):2516–2521. doi: 10.1128/iai.63.7.2516-2521.1995

Expression, purification, and characterization of a novel G protein, SGP, from Streptococcus mutans.

J Wu 1, M I Cho 1, H K Kuramitsu 1
PMCID: PMC173336  PMID: 7790064

Abstract

The sgp gene of Streptococcus mutans was recently detected immediately downstream from the dgk gene within the same operon. In this study, the sgp gene was subcloned into the pMAL-c2 vector and SGP (S. mutans G protein) was overexpressed in Escherichia coli as a fusion protein with the maltose-binding protein at a level of 40% of total cellular protein. One-step amylose affinity chromatography purification of this fusion protein yielded a product of approximately 95% purity. SGP was purified from this fusion protein following cleavage with protease factor Xa and DEAE-Sephacel chromatography. In nucleotide binding assays, recombinant SGP showed specific binding for GTP and GDP, but not ATP, CTP, and UTP, and also catalyzed efficient hydrolysis of GTP to GDP. Kinetic studies revealed that the SGP Km value for GTP in this reaction was approximately 5.9 microM. Mg2+ also served as a cofactor of SGP in this reaction. In vivo subcellular localization by immunogold labelling demonstrated that SGP was associated with both membrane and cytoplasmic fractions. SGP not only had structural similarities with other G proteins but also proved to have high-level intrinsic GTPase activity. Therefore, SGP appears to be a new member of the G protein superfamily and may participate in transmembrane signaling in the responses of S. mutans cells to environmental stimuli.

Full Text

The Full Text of this article is available as a PDF (648.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990 Nov 8;348(6297):125–132. doi: 10.1038/348125a0. [DOI] [PubMed] [Google Scholar]
  2. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991 Jan 10;349(6305):117–127. doi: 10.1038/349117a0. [DOI] [PubMed] [Google Scholar]
  3. Chen S. M., Takiff H. E., Barber A. M., Dubois G. C., Bardwell J. C., Court D. L. Expression and characterization of RNase III and Era proteins. Products of the rnc operon of Escherichia coli. J Biol Chem. 1990 Feb 15;265(5):2888–2895. [PubMed] [Google Scholar]
  4. Clarke S. Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem. 1992;61:355–386. doi: 10.1146/annurev.bi.61.070192.002035. [DOI] [PubMed] [Google Scholar]
  5. Gollop N., March P. E. A GTP-binding protein (Era) has an essential role in growth rate and cell cycle control in Escherichia coli. J Bacteriol. 1991 Apr;173(7):2265–2270. doi: 10.1128/jb.173.7.2265-2270.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gout I., Dhand R., Hiles I. D., Fry M. J., Panayotou G., Das P., Truong O., Totty N. F., Hsuan J., Booker G. W. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell. 1993 Oct 8;75(1):25–36. [PubMed] [Google Scholar]
  7. Hamada S., Slade H. D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev. 1980 Jun;44(2):331–384. doi: 10.1128/mr.44.2.331-384.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Higashijima T., Ferguson K. M., Smigel M. D., Gilman A. G. The effect of GTP and Mg2+ on the GTPase activity and the fluorescent properties of Go. J Biol Chem. 1987 Jan 15;262(2):757–761. [PubMed] [Google Scholar]
  9. Iwami Y., Abbe K., Takahashi-Abbe S., Yamada T. Acid production by streptococci growing at low pH in a chemostat under anaerobic conditions. Oral Microbiol Immunol. 1992 Oct;7(5):304–308. doi: 10.1111/j.1399-302x.1992.tb00593.x. [DOI] [PubMed] [Google Scholar]
  10. Kuramitsu H. K. Virulence factors of mutans streptococci: role of molecular genetics. Crit Rev Oral Biol Med. 1993;4(2):159–176. doi: 10.1177/10454411930040020201. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lambright D. G., Noel J. P., Hamm H. E., Sigler P. B. Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein. Nature. 1994 Jun 23;369(6482):621–628. doi: 10.1038/369621a0. [DOI] [PubMed] [Google Scholar]
  13. Lin Y. P., Sharer J. D., March P. E. GTPase-dependent signaling in bacteria: characterization of a membrane-binding site for era in Escherichia coli. J Bacteriol. 1994 Jan;176(1):44–49. doi: 10.1128/jb.176.1.44-49.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Loesche W. J. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986 Dec;50(4):353–380. doi: 10.1128/mr.50.4.353-380.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lounsbury K. M., Beddow A. L., Macara I. G. A family of proteins that stabilize the Ran/TC4 GTPase in its GTP-bound conformation. J Biol Chem. 1994 Apr 15;269(15):11285–11290. [PubMed] [Google Scholar]
  16. Maina C. V., Riggs P. D., Grandea A. G., 3rd, Slatko B. E., Moran L. S., Tagliamonte J. A., McReynolds L. A., Guan C. D. An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene. 1988 Dec 30;74(2):365–373. doi: 10.1016/0378-1119(88)90170-9. [DOI] [PubMed] [Google Scholar]
  17. Moore J. T., Uppal A., Maley F., Maley G. F. Overcoming inclusion body formation in a high-level expression system. Protein Expr Purif. 1993 Apr;4(2):160–163. doi: 10.1006/prep.1993.1022. [DOI] [PubMed] [Google Scholar]
  18. Pavlovic J., Schröder A., Blank A., Pitossi F., Staeheli P. Mx proteins: GTPases involved in the interferon-induced antiviral state. Ciba Found Symp. 1993;176:233–247. doi: 10.1002/9780470514450.ch15. [DOI] [PubMed] [Google Scholar]
  19. Ridley A. J. Membrane ruffling and signal transduction. Bioessays. 1994 May;16(5):321–327. doi: 10.1002/bies.950160506. [DOI] [PubMed] [Google Scholar]
  20. Schwemmle M., Staeheli P. The interferon-induced 67-kDa guanylate-binding protein (hGBP1) is a GTPase that converts GTP to GMP. J Biol Chem. 1994 Apr 15;269(15):11299–11305. [PubMed] [Google Scholar]
  21. Sojar H. T., Lee J. Y., Bedi G. S., Cho M. I., Genco R. J. Purification, characterization, and localization of a major membrane protein antigen from Porphyromonas (bacteroides) gingivalis. Biochem Int. 1991 Oct;25(3):437–446. [PubMed] [Google Scholar]
  22. Soldati T., Shapiro A. D., Svejstrup A. B., Pfeffer S. R. Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange. Nature. 1994 May 5;369(6475):76–78. doi: 10.1038/369076a0. [DOI] [PubMed] [Google Scholar]
  23. Sood P., Lerner C. G., Shimamoto T., Lu Q., Inouye M. Characterization of the autophosphorylation of Era, an essential Escherichia coli GTPase. Mol Microbiol. 1994 Apr;12(2):201–208. doi: 10.1111/j.1365-2958.1994.tb01009.x. [DOI] [PubMed] [Google Scholar]
  24. Yamashita Y., Takehara T., Kuramitsu H. K. Molecular characterization of a STreptococcus mutans mutant altered in environmental stress responses. J Bacteriol. 1993 Oct;175(19):6220–6228. doi: 10.1128/jb.175.19.6220-6228.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES