Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jul;63(7):2522–2531. doi: 10.1128/iai.63.7.2522-2531.1995

Clonal diversity of the taxon Porphyromonas gingivalis assessed by random amplified polymorphic DNA fingerprinting.

C Ménard 1, C Mouton 1
PMCID: PMC173337  PMID: 7790065

Abstract

A total of 97 strains of the periopathogen Porphyromonas gingivalis were collected. This collection included laboratory strains and clinical isolates of human origin with diverse clinical and geographical origins. Biological diversity was further increased by including 32 strains isolated from the oral cavities of nine different animal species. Genomic fingerprints of the 129 strains were generated as random amplified polymorphic DNAs (RAPDs) by the technique of PCR amplification with a single primer of arbitrary sequence. Four nonameric oligonucleotides were used as single primers, and the banding patterns of the DNA products separated on agarose gels were compared after ethidium ethidium bromide staining. Distance coeffients based on the positions of the major DNA fragments were calculated, and dendrograms were generated. We identified 102 clonal types (CTs) that could be assembled into three main groups by cluster analysis by the unweighted pair group method with mathematic averages. Group I (n = 79 CTs) included all 97 human strains and 6 monkey isolates. The strains in group II (n = 22 CTs) and III (n = 1 CT) were strongly differentiated from those in group I and included only strains of animal origin; they likely represent two cryptic species within the present P. gingivalis taxon. We observed that strains from Old World monkeys clustered together with the human genotype, whereas strains from New World monkeys clustered with the animal genotype. Our results with human strains also indicated that (i) the population structure is basically clonal, (ii) no dominant or widespread CT could be observed, and (iii) no relationship could be established between specific clusters of CTs and the periodontal status of the host. Our results corroborate previous findings by B. G. Loos, D. W. Dyer, T. S. Whittam, and R. K. Selander (Infect. Immun. 61:204-212, 1993) and suggest that P. gingivalis should be considered a commensal of the oral cavity acting as an opportunistic pathogen. Our results are not consistent with the hypothesis that only a few virulent clones of P. gingivalis are associated with disease.

Full Text

The Full Text of this article is available as a PDF (253.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caugant D. A., Selander R. K., Olsen I. Differentiation between Actinobacillus (Haemophilus) actinomycetemcomitans, Haemophilus aphrophilus and Haemophilus paraphrophilus by multilocus enzyme electrophoresis. J Gen Microbiol. 1990 Oct;136(10):2135–2141. doi: 10.1099/00221287-136-10-2135. [DOI] [PubMed] [Google Scholar]
  2. Chen C., Slots J. Clonal analysis of Porphyromonas gingivalis by the arbitrarily primed polymerase chain reaction. Oral Microbiol Immunol. 1994 Apr;9(2):99–103. doi: 10.1111/j.1399-302x.1994.tb00042.x. [DOI] [PubMed] [Google Scholar]
  3. Clark W. B., Magnusson I., Abee C., Collins B., Beem J. E., McArthur W. P. Natural occurrence of black-pigmented Bacteroides species in the gingival crevice of the squirrel monkey. Infect Immun. 1988 Sep;56(9):2392–2399. doi: 10.1128/iai.56.9.2392-2399.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DeBry R. W. The consistency of several phylogeny-inference methods under varying evolutionary rates. Mol Biol Evol. 1992 May;9(3):537–551. doi: 10.1093/oxfordjournals.molbev.a040740. [DOI] [PubMed] [Google Scholar]
  5. Eisenstein B. I. New molecular techniques for microbial epidemiology and the diagnosis of infectious diseases. J Infect Dis. 1990 Apr;161(4):595–602. doi: 10.1093/infdis/161.4.595. [DOI] [PubMed] [Google Scholar]
  6. Fournier D., Mouton C. Phenotypic characterization of human and animal biotypes within the species Porphyromonas gingivalis. Res Microbiol. 1993 Jul-Aug;144(6):435–444. doi: 10.1016/0923-2508(93)90051-3. [DOI] [PubMed] [Google Scholar]
  7. Frisken K. W., Tagg J. R., Laws A. J., Orr M. B. Black-pigmented Bacteroides associated with broken-mouth periodontitis in sheep. J Periodontal Res. 1987 Mar;22(2):156–159. doi: 10.1111/j.1600-0765.1987.tb01556.x. [DOI] [PubMed] [Google Scholar]
  8. Genco R. J., Zambon J. J., Christersson L. A. The origin of periodontal infections. Adv Dent Res. 1988 Nov;2(2):245–259. doi: 10.1177/08959374880020020901. [DOI] [PubMed] [Google Scholar]
  9. Grenier D., Mayrand D. Selected characteristics of pathogenic and nonpathogenic strains of Bacteroides gingivalis. J Clin Microbiol. 1987 Apr;25(4):738–740. doi: 10.1128/jcm.25.4.738-740.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haapasalo M., Ranta H., Ranta K., Shah H. Black-pigmented Bacteroides spp. in human apical periodontitis. Infect Immun. 1986 Jul;53(1):149–153. doi: 10.1128/iai.53.1.149-153.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaczmarek F. S., Coykendall A. L. Production of phenylacetic acid by strains of Bacteroides asaccharolyticus and Bacteroides gingivalis (sp. nov.). J Clin Microbiol. 1980 Aug;12(2):288–290. doi: 10.1128/jcm.12.2.288-290.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kinder S. A., Holt S. C. Characterization of coaggregation between Bacteroides gingivalis T22 and Fusobacterium nucleatum T18. Infect Immun. 1989 Nov;57(11):3425–3433. doi: 10.1128/iai.57.11.3425-3433.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laliberté M., Mayrand D. Characterization of black-pigmented Bacteroides strains isolated from animals. J Appl Bacteriol. 1983 Oct;55(2):247–252. doi: 10.1111/j.1365-2672.1983.tb01322.x. [DOI] [PubMed] [Google Scholar]
  14. Loos B. G., Dyer D. W. Restriction fragment length polymorphism analysis of the fimbrillin locus, fimA, of Porphyromonas gingivalis. J Dent Res. 1992 May;71(5):1173–1181. doi: 10.1177/00220345920710050901. [DOI] [PubMed] [Google Scholar]
  15. Loos B. G., Dyer D. W., Whittam T. S., Selander R. K. Genetic structure of populations of Porphyromonas gingivalis associated with periodontitis and other oral infections. Infect Immun. 1993 Jan;61(1):204–212. doi: 10.1128/iai.61.1.204-212.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Loos B. G., Mayrand D., Genco R. J., Dickinson D. P. Genetic heterogeneity of Porphyromonas (Bacteroides) gingivalis by genomic DNA fingerprinting. J Dent Res. 1990 Aug;69(8):1488–1493. doi: 10.1177/00220345900690080801. [DOI] [PubMed] [Google Scholar]
  17. Loos B. G., Van Winkelhoff A. J., Dunford R. G., Genco R. J., De Graaff J., Dickinson D. P., Dyer D. W. A statistical approach to the ecology of Porphyromonas gingivalis. J Dent Res. 1992 Feb;71(2):353–358. doi: 10.1177/00220345920710020201. [DOI] [PubMed] [Google Scholar]
  18. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967 Feb;27(2):209–220. [PubMed] [Google Scholar]
  19. Musser J. M., Granoff D. M., Pattison P. E., Selander R. K. A population genetic framework for the study of invasive diseases caused by serotype b strains of Haemophilus influenzae. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5078–5082. doi: 10.1073/pnas.82.15.5078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Musser J. M., Hewlett E. L., Peppler M. S., Selander R. K. Genetic diversity and relationships in populations of Bordetella spp. J Bacteriol. 1986 Apr;166(1):230–237. doi: 10.1128/jb.166.1.230-237.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Musser J. M., Kapur V. Clonal analysis of methicillin-resistant Staphylococcus aureus strains from intercontinental sources: association of the mec gene with divergent phylogenetic lineages implies dissemination by horizontal transfer and recombination. J Clin Microbiol. 1992 Aug;30(8):2058–2063. doi: 10.1128/jcm.30.8.2058-2063.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ménard C., Brousseau R., Mouton C. Application of polymerase chain reaction with arbitrary primer (AP-PCR) to strain identification of Porphyromonas (Bacteroides) gingivalis. FEMS Microbiol Lett. 1992 Aug 15;74(2-3):163–168. doi: 10.1111/j.1574-6968.1992.tb05360.x. [DOI] [PubMed] [Google Scholar]
  23. Ménard C., Mouton C. Randomly amplified polymorphic DNA analysis confirms the biotyping scheme of Porphyromonas gingivalis. Res Microbiol. 1993 Jul-Aug;144(6):445–455. doi: 10.1016/0923-2508(93)90052-4. [DOI] [PubMed] [Google Scholar]
  24. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Neiders M. E., Chen P. B., Suido H., Reynolds H. S., Zambon J. J., Shlossman M., Genco R. J. Heterogeneity of virulence among strains of Bacteroides gingivalis. J Periodontal Res. 1989 May;24(3):192–198. doi: 10.1111/j.1600-0765.1989.tb02005.x. [DOI] [PubMed] [Google Scholar]
  26. Orskov F., Orskov I. From the national institutes of health. Summary of a workshop on the clone concept in the epidemiology, taxonomy, and evolution of the enterobacteriaceae and other bacteria. J Infect Dis. 1983 Aug;148(2):346–357. doi: 10.1093/infdis/148.2.346. [DOI] [PubMed] [Google Scholar]
  27. Pancholi V., Ayyagari A., Agarwal K. C. Role of haemagglutinating Bacteroides asaccharolyticus in clinical infections. Indian J Med Res. 1983 Mar;77:324–328. [PubMed] [Google Scholar]
  28. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  29. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol. 1986 May;51(5):873–884. doi: 10.1128/aem.51.5.873-884.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Selander R. K., Levin B. R. Genetic diversity and structure in Escherichia coli populations. Science. 1980 Oct 31;210(4469):545–547. doi: 10.1126/science.6999623. [DOI] [PubMed] [Google Scholar]
  31. Selander R. K., McKinney R. M., Whittam T. S., Bibb W. F., Brenner D. J., Nolte F. S., Pattison P. E. Genetic structure of populations of Legionella pneumophila. J Bacteriol. 1985 Sep;163(3):1021–1037. doi: 10.1128/jb.163.3.1021-1037.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shah H. N., Williams R. A., Bowden G. H., Hardie J. M. Comparison of the biochemical properties of Bacteroides melaninogenicus from human dental plaque and other sites. J Appl Bacteriol. 1976 Dec;41(3):473–495. doi: 10.1111/j.1365-2672.1976.tb00660.x. [DOI] [PubMed] [Google Scholar]
  33. Smith G. L., Socransky S. S., Smith C. M. Rapid method for the purification of DNA from subgingival microorganisms. Oral Microbiol Immunol. 1989 Mar;4(1):47–51. doi: 10.1111/j.1399-302x.1989.tb00406.x. [DOI] [PubMed] [Google Scholar]
  34. Sundqvist G., Johansson E., Sjögren U. Prevalence of black-pigmented bacteroides species in root canal infections. J Endod. 1989 Jan;15(1):13–19. doi: 10.1016/S0099-2399(89)80092-5. [DOI] [PubMed] [Google Scholar]
  35. Syed S. A. Characteristics of Bacteroides asaccharolyticus from dental plaques of beagle dogs. J Clin Microbiol. 1980 May;11(5):522–526. doi: 10.1128/jcm.11.5.522-526.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tibayrenc M., Neubauer K., Barnabé C., Guerrini F., Skarecky D., Ayala F. J. Genetic characterization of six parasitic protozoa: parity between random-primer DNA typing and multilocus enzyme electrophoresis. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1335–1339. doi: 10.1073/pnas.90.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tunér K., Nord C. E. Betalactamase-producing microorganisms in recurrent tonsillitis. Scand J Infect Dis Suppl. 1983;39:83–85. [PubMed] [Google Scholar]
  38. Van Steenbergen T. J., Delemarre F. G., Namavar F., De Graaff J. Differences in virulence within the species Bacteroides gingivalis. Antonie Van Leeuwenhoek. 1987;53(4):233–244. doi: 10.1007/BF00393930. [DOI] [PubMed] [Google Scholar]
  39. Wang G., Whittam T. S., Berg C. M., Berg D. E. RAPD (arbitrary primer) PCR is more sensitive than multilocus enzyme electrophoresis for distinguishing related bacterial strains. Nucleic Acids Res. 1993 Dec 25;21(25):5930–5933. doi: 10.1093/nar/21.25.5930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Welsh J., Pretzman C., Postic D., Saint Girons I., Baranton G., McClelland M. Genomic fingerprinting by arbitrarily primed polymerase chain reaction resolves Borrelia burgdorferi into three distinct phyletic groups. Int J Syst Bacteriol. 1992 Jul;42(3):370–377. doi: 10.1099/00207713-42-3-370. [DOI] [PubMed] [Google Scholar]
  42. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yamasaki T., Nagata A., Kiyoshige T., Sato M., Nakamura R. Black-pigmented, asaccharolytic Bacteroides species resembling Porphyromonas gingivalis (Bacteroides gingivalis) from beagle dogs. Oral Microbiol Immunol. 1990 Dec;5(6):332–335. doi: 10.1111/j.1399-302x.1990.tb00436.x. [DOI] [PubMed] [Google Scholar]
  44. van Winkelhoff A. J., Carlee A. W., de Graaff J. Bacteroides endodontalis and other black-pigmented Bacteroides species in odontogenic abscesses. Infect Immun. 1985 Sep;49(3):494–497. doi: 10.1128/iai.49.3.494-497.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES